Понятие вероятности события — в помощь студенту

Статистическое определение вероятности

Рассмотрим статистическое определение вероятности, чтобы понимать статистический подход к численному определению вероятности. Данный подход очень важен тогда, когда из теоретических соображений подобный к соображению симметрии, значение вероятности событий наперёд невозможно установить.

К примеру, если у партии из 100 случайно отобранных для контроля товара, обнаружено 2 нестандартных, тогда утверждение, что соотношение (его называют относительной частотой), можно считать вероятностью появления нестандартного товара, не может быть убедительным.

Этот пример в схему случаев не вписывается. Теоретически вероятность такого события установить невозможно. Однако, выход есть, если много раз повторить выборки.

(при одинаковых условиях) и проследить за значением относительных частот событий, то есть, воспользоваться статистическими методами.

Относительной частотой случайного события называется отношение , числа испытаний, в которых это событие появилось, к общему числу , проведённых испытаний, и обозначается:

Для подтверждения этого равенства подбросим раз монеты. В данном случае “герб” появлялся раз, – относительная частота выпадания “герба”.

Статистические закономерности

 В литературе по теории вероятностей эксперименты проводились несколькими учёными, о которых остались записи. Давайте их вспомним:

Автор эксперимента
Бюффон (1707-1788) – французский естествоиспытатель, натуралист, биолог, математик 4040 0,507
Де Морган (1806-1871) – шотландский математик, логик 4090 0,5005
Джевонс (1835-1882) – английский экономист и философ 20 480 0,5068
Романовский В. И. (1879-1954) – советский математик 80 640 0,4933
Пирсон К. (1857-1936) – английский математик-статистик, биолог, философ. 24 000 0,5005
Феллер У. (1906-1970) – американский математик. 10 000 0,4979

Вышеперечисленные результаты испытаний (экспериментов) полностью согласовываются с теоретическим значением вероятности, которая равняется 0,5 и получена предположительно равной возможности “герба” и “числа”, то есть симметричной монеты. При помощи специальных вероятных методов за данными испытаниями можно установить, что выпадания “герба” или “числа” в отдельных случаях не одинаково вероятно, то есть монета не симметрична.

Ряд статистических закономерностей были обнаружены в конце XIX и в начале XX столетия в физике, химии, биологии, экономике и других науках.

Было установлено, что если опыты проводятся при неизменных условиях, в каждом из которых число испытаний достаточно большое, тогда число испытаний, при которых данное событие появилось, то есть частота событий , как правило, мало отличается от вероятности появления событий . И чем большее количество испытаний, тем реже встречаются частоты , которые значительно отклоняются от вероятности .

Как видите, при многоразовых испытаниях, относительная частота, которая еле меняется, колеблется вокруг некоторого числа, которое есть вероятностью событий. Согласно статистическому определению за вероятность событий принимается относительная частота или число, близкое к ней.

Примеры по теме “Статистическое определение вероятности”

Пример 1

Задача

Статистическая вероятность попадания в цель при 84 выстрелах равна 0,9. Сколько всего было попаданий?

Решение

Ответ

Итого попаданий – 75,6.

Пример 2

Задача

Швейная фабрика заказала 3500 пуговиц, чтобы пошить школьную форму. Когда проверяли партию на 700 пуговиц, оказалось, что из них 15 пуговиц бракованных. Какое наименьшее количество запасных пуговиц необходимо еще заказать, чтобы исключить брак?

Решение

Ответ

Чтобы исключить брак, нужно заказать минимум 75 шт. запасных пуговиц.

Источник: https://NauchnieStati.ru/spravka/statisticheskoe-opredelenie-verojatnosti-sluchajnogo-sobytija/

События, виды событий —

Теория

Опыт, эксперимент, наблюдение явления или некоторого процесса называется испытанием.

Примеры испытаний: бросание монеты, выстрел из винтовки, бросание игральной кости (кубика с нанесённой на каждую из шести граней цифры от одного до шести), реализация некоторого физического, механического или технологического процесса и т.д.

При бросании монеты исходами (событиями) являются выпадение герба или выпадение цифры, а при бросании игральной кости — выпадение какой либо цифры на верхней грани кости. Испытания сопровождаются их исходами (событиями).

Событие — это качественный и (или) количественный результат испытания (исход), осуществляемого при определённой совокупности условий. Для обозначения событий используются большие буквы латинского алфавита: А, В, С и т.д.

Различают следующие типы событий: случайные события, совместные или несовместные события, достоверные или невозможные события, зависимые или независимые события, равновозможные события, элементарные (простые, неразложимые) события, событие или совокупность событий (исходов), благоприятствующих какому-либо другому событию.

Случайное событие – это результат испытания (или величина), который нельзя заранее спрогнозировать, т.е. нельзя сказать, произойдёт это событие или не произойдёт, или, если событие произойдёт, то неизвестно, какое значение примет результат этого события.

Случайные события – первичные, неопределяемые (в строгом смысле) понятия в теории вероятностей, аналогичные понятиям точки и прямой – в геометрии.

Например, пусть игральная кость с пронумерованными гранями от 1 до 6 подбрасывается два раза. В этом опыте можно рассматривать следующие события: событие А – оба раза выпадет число 1; событие В – хотя бы один раз выпадет число 3; событие С – сумма выпавших чисел равна 8 и т.д.

Событие, которое обязательно наступит (никогда не произойдёт) в данном опыте, называется достоверным (невозможным).

Достоверное событие обозначают символом Ω, а невозможное – Æ.

Например, в опыте, состоящем в подбрасывании кости один раз – событие А – выпадение одного из чисел 1,2,3,4,5,6 – есть достоверное, а событие В – выпадение числа 7 – невозможное.

Два случайных события называются несовместными, если наступление одного из них исключает наступление другого в одном и том же испытании. (Таким образом, несовместные события не могут наступать одновременно). В противном случае, т.е.

если наступление одного события не исключает наступление другого события в одном и том же испытании, то эти события называются совместными.

Например, если событие А – появление числа 2 при одном бросании кости, а событие В – появление чётного числа в этом же бросании, то события А иВ совместные, а событие С – появление числа 2 при одном бросании кости и событие D – появление числа 3 в этом бросании – события несовместные.

  • События А1, А2, … , Аn называются попарно несовместными, если любые два из них являются несовместными.
  • События называются равновозможными, если ни одно из них не является более возможным по сравнению с другими событиями.
  • События называются независимыми (зависимыми), если числовая характеристика возможности наступления одного события не зависит (зависит) от числовых характеристик наступления других событий (указанные числовые характеристики некоторых событий А, В, С, … называются вероятностями этих событий).

Определение. Совокупность попарно несовместных событий образуют полную группу событий для данного испытания, если в результате каждого испытания происходит одно и только одно из них.

Примеры полных групп событий: а) выпадение герба {Г} и выпадение цифры {Ц} при одном бросании монеты; б) попадание в цель и промах при одном выстреле по мишени; в) выпадение цифр «1», «2», «3», «4», «5», «6» при одном бросании кости.

Определение. События ω1, ω2, … , ωn, образующие полную группу попарно несовместных и равновозможных событий, называются элементарными событиями.

Элементарными событиями являются выпадение цифр «1», … ,«6» при бросании кости. Эти события несовместны, равновозможны и образуют полную группу (предполагается, что кость является однородной и центрированной).

Множество всех элементарных событий называется пространством элементарных событий и обозначается Ω. Например, в результате бросания кости выпадение цифры i = 1, 2, 3, 4, 5, 6 образует пространство Ω = {1, 2, 3, 4, 5, 6}.

Элементарные события, составляющие пространство Ω, обозначаются ω1, ω2, …, ω6.

Замечание. Кроме случайных событий в теории вероятностей вводятся в рассмотрение случайные величины. Случайная величина – это переменная, которая в результате испытания в зависимости от случая принимает одно из возможных значений. Случайные величины в данном пособии рассматриваются более подробно в главе 3.

Читайте также:  Особенности храмовой архитектуры - в помощь студенту

Источник: https://einsteins.ru/subjects/terver/theory-terver/sobytiya-vidy-sobytij

Теория вероятности в жизни людей

Основы теории вероятностей нужно знать каждому человеку для формирования правильного мировоззрения, для осознания того, что мы живем в случайном, вероятностном мире.

Психология человека такова, что ему неуютно среди случайностей. Он жаждет определенности и справедливости, ищет причин и объяснений.

Часто таким образом возникают суеверия: например, среди африканских племен распространено поверье о том, что бывают просто львы и львы, в которых переселились души умерших. Последние на людей не нападают.

Это объяснение не несет полезной информации, поскольку нет признаков, по которым заранее можно было бы определить, из какой категории лев, но оно успокаивает психологически. Точно так же появляются известные всем суеверия при сдаче экзаменов.

Некоторые суеверия, кстати, основаны на частотных совпадениях (например, мелких неприятностей и встреч с черной кошкой). Это относится и к приметам, которые порой подмечают вероятностные закономерности. Так, поговоркам «Беда никогда не приходит одна» или «Жизнь, она полосатая» соответствует в теории вероятностей закон серий.

Следует помнить и то, что мы живем в мире, где происходят случайные события, и то, что закономерности пробиваются через массу случайностей. Чем сложнее система, тем труднее обнаружить закономерности. Именно в этих случаях и используют вероятностные методы. [4]

Таким образом, теория вероятности актуальна в наши дни как в математике и точных науках, так и в нашей повседневной жизни.

Теория вероятностей изучает объективные закономерности массовых случайных событий. Она является теоретической базой для математической статистики, занимающейся разработкой методов сбора, описания и обработки результатов наблюдений. Путем наблюдений (испытаний, экспериментов), т.е. опыта в широком смысле слова, происходит познание явлений действительного мира [1].

Теория вероятностей – раздел математики, изучающий закономерности случайных явлений, наблюдаемых при многократном повторении опыта [2, с.13].

Теория вероятностей – это раздел математики, изучающий закономерности случайных явлений: случайные события, случайные величины, их свойства и операции над ними [3].

Основные объекты теории вероятностей – случайные события, случайные величины, случайные процессы, то есть фактически весь окружающий нас мир [4, с.6].

Событие – это то, что может произойти или нет при выполнении определённого комплекса условий, или, как говорят, при проведении испытания. Среди возможных событий выделяют достоверные и невозможные.

Если при каждом испытании всегда происходит некоторое событие, то оно называется достоверным. Если при испытании некоторое событие заведомо не может произойти, то оно называется невозможным.

Если событие не является достоверным или невозможным, то оно часто называется случайным [5, с.10].

Во многих областях человеческой деятельности существуют ситуации, когда определённые явления могут повторяться неограниченное число раз в одинаковых условиях. Анализируя последовательно результаты таких простейших явлений, как подбрасывание монеты, игральной кости, выброс карты из колоды и т.п.

, мы замечаем две особенности, присущие такого рода экспериментам. Во-первых, не представляется возможным предсказать исход последующего эксперимента по результатам предыдущих, как бы ни было велико число проведённых испытаний.

Во-вторых, относительная частота определённых исходов по мере роста числа испытаний стабилизируется, приближаясь к определённому пределу [6, с.8].

Рассмотрим теорию вероятностей на очень простых примерах. Если у нас в ящике лежит 10 пронумерованных шаров с цифрами от 1 до 10, то вероятность вытянуть шар с числом 10 равна 10 процентам.

Но более вероятней, что мы вытянем любое другое число от 1 до 9, а не самое большое (не 10), поскольку такая вероятность составляет 90 процентов. Вытянуть шар с самым большим числом из 10000 пронумерованных шаров уже слишком маловероятно.

Скорее всего, мы вытянем любое другое число (не 10000). При 10 миллионах шарах вытянуть самое большое число (10000000) практически невозможно [7].

Главным понятием теории вероятностей является вероятность. Это слово «вероятность», синонимом которого является, например, слово «шанс» достаточно часто применяется в повседневной жизни.

Думаю, каждому знакомы фразы: «Завтра, вероятно, выпадет снег», или «вероятнее всего в выходные я поеду на природу», или «это просто невероятно», или «есть шанс получить зачет автоматом». Такого рода фразы на интуитивном уровне оценивают вероятность того, что произойдет некоторое случайное событие.

В свою очередь математическая вероятность дает некоторую числовую оценку вероятности того, что произойдет некоторое случайное событие.

Теория вероятностей оформилась в самостоятельную науку относительно не давно, хотя история теории вероятностей началась еще в античности. Так, Лукреций, Демокрит, Кар и еще некоторые ученые древней Греции в своих рассуждениях говорили о равновероятностных исходах такого события, как возможность того, что вся материя состоит из молекул.

Таким образом, понятие вероятности использовалось на интуитивном уровне, но оно не было выделено в новую категорию. Тем не менее, античные ученые заложили прекрасный фундамент для возникновения этого научного понятия.

В средние века, можно сказать, и зародилась теория вероятности, когда были приняты первые попытки математического анализа, таких азартных игр как кости, орлянка, рулетка [8].

Первые подходы к оценке вероятности того или иного события были популярны еще в Средневековье среди «гамлеров» того времени. Однако тогда они имели лишь эмпирическое исследование (то есть оценка на практике, методом эксперимента) [9].

Первые научные работы по теории вероятностей появились в 17 веке. Когда такие ученые как Блез Паскаль и Пьер Ферма открыли некоторые закономерности, которые возникают при бросании костей. В ту же пору к данному вопросу проявлял интерес еще один ученый Христиан Гюйгенс.

Он в 1657 в своей работе ввел следующие понятия теории вероятностей: понятие вероятности как величины шанса или возможности; математическое ожидание для дискретных случаев, в виде цены шанса, а также теоремы сложения и умножения вероятностей, которые правда не были сформулированы в явном виде.

Тогда же теория вероятностей стала находить сферы своего применения – демографию, страховое дело, оценку ошибок наблюдений [8].

Вероятностные представления довольно успешно применялись ещё в 18 веке такими выдающимися учеными как Лаплас, Лагранж, Лежандр, Гаусс для оценки ошибок измерений, в результате чего уже в то время были заложены основы теории ошибок [10, с.3].

Дальнейшее развитие теории вероятностей привело к необходимости аксиоматизации теории вероятностей и главного понятия – вероятности. Так становление аксиоматики теории вероятностей произошло в 30 гг 20 века. Самый существенный вклад в заложение основ теории внес Космогоров А.Н.

На сегодняшний день теории вероятностей это самостоятельная наука, имеющая огромную сферу применения [8].

Последние десятилетия характеризуются резким повышением интереса к тем разделам математики и ее приложений, которые анализируют явления, носящие «случайный» характер.

Эта тенденция в значительной степени объясняется тем, что большинство возникших в последние десятилетия новых математических дисциплин, которое ныне обозначается собирательным термином «кибернетика», оказалось тесно связанным с теорией вероятностей.

Тем самым теория вероятностей стала чуть ли не самой первой по прикладному значению из всех математических дисциплин.

При этом возникновение новых, в большинстве своем «порожденных» теорией вероятностей наук, скажем «теория игр», «теория информации», «страховая математика» или «стохастическая финансовая математика» привело к положению, при котором теорию вероятностей также приходится рассматривать как объединение большого числа разнородных и достаточно глубоко развитых математических дисциплин [10, с.4].

Читайте также:  Движение готовой продукции - в помощь студенту

Людей всегда интересовало будущее. Человечество во все времена искало способ его предугадать, или спланировать. В разное время разными способами. В жизни мы часто сталкиваемся со случайными явлениями.

Чем обусловлена их случайность – нашим незнанием истинных причин происходящего или случайность лежит в основе многих явлений? Споры на эту тему не утихают в самых разных областях науки.

Случайным ли образом возникают мутации, насколько зависит историческое развитие от отдельной личности, можно ли считать Вселенную случайным отклонением от законов сохранения? [8]

Примеров реального использования теории вероятности в жизни множество. Практически вся современная экономика базируется на ней.

Выпуская на рынок определенный товар, грамотный предприниматель наверняка учтет риски, а также вероятности покупки в том или рынке, стране и т.д. Практически не представляют свою жизнь без теории вероятности брокеры на мировых рынках.

Предсказывание денежного курса (в котором точно не обойтись без теории вероятности) на денежных опционах дает возможность зарабатывать на данной теории серьезные деньги.

Теория вероятности имеет значение в начале практически любой деятельности, а также ее регулирования.

Благодаря оценке шансов той или иной неполадки (например, космического корабля), мы знаем, какие усилия нам нужно приложить, что именно проверить, что вообще ожидать в тысячи километров от Земли.

Возможности теракта в метрополитене, экономического кризиса или ядерной войны – все это можно выразить в процентах. А главное, предпринимать соответствующие контрдействия исходя из полученных данных. [9]

Решения чаще всего принимаются эмоционально. Люди боятся летать самолетами. А между тем, самое опасное в полете на самолете – это дорога в аэропорт на автомобиле. Но попробуй кому-то объяснить, что машина опасней самолета.

Вероятность того, что пассажир, севший в самолет, погибнет в авиакатастрофе составляет примерно 1/8000000. Если пассажир будет садиться каждый день на случайный рейс, ему понадобится 21000 лет чтобы погибнуть.

По исследованиям: в США в первые 3 месяца после терактов 11 сентября 2001 года погибло еще одна тысяча людей… косвенно. Они в страхе перестали летать самолетами и начали передвигаться по стране на автомобилях. А так как это опасней, то количество смертей возросло.

По телевидению пугают: птичьим и свиными гриппами, терроризмом, но вероятность этих событий ничтожна по сравнению с настоящими угрозами. Опасней переходить дорогу по зебре, чем лететь на самолете.

Или другой пример – от падения кокосов погибает около 150 человек в год. Это в десятки раз больше, чем от укуса акул. Но фильма «Кокос-убийца» пока не снято.

Подсчитано, что шанс человека быть подвергнутым нападению акулы составляет 1 к 11,5 млн, а шанс погибнуть от такого нападения 1 к 264,1 млн. Среднегодовое количество утонувших в США составляет 3306 человек, а погибших от акул 1.

Миром правит вероятность и нужно помнить об этом. Они помогут вам взглянуть на мир с точки зрения случая [8].

Таким образом, теорию вероятностей нельзя не применять в нашей жизни. Она имеет разные области применения такие как: биологические и химические процессы, история, экономика, кораблестроение и машиностроение, медицина и большинство различной деятельности человека. Люди применяют её как сознательно, так и подсознательно, что проявляется в обычных повседневных фразах и действиях.

Разумный человек должен стремиться мыслить, исходя из законов вероятностей. Теория вероятностей – это одна из составляющих частей успеха. Если стремиться учитывать законы вероятностей и, в том случае, если вероятность неблагоприятная, предпринимать соответствующие контрдействия, то можно упростить себе жизнь в разы и сэкономить своё время, которое так ценно для каждого из нас.

Список использованных источников

Источник: https://www.informio.ru/publications/id4160/Teorija-verojatnosti-v-zhizni-lyudei

Вероятность события

Перейдем к основному понятию теории вероятностей — понятию вероятности события. В методологических терминах можно сказать, что вероятность события является мерой возможности осуществления события.

В ряде случаев естественно считать, что вероятность события А — это число, к которому приближается отношение количества осуществлений события А к общему числу' всех опытов (т.е. частота осуществления события А) — при увеличении числа опытов, проводящихся независимо друг от друга. Иногда можно предсказать это число из соображений равновозможности.

Так, при бросании симметричной монеты и герб, и решетка имеют одинаковые шансы оказаться сверху, а именно, 1 шанс из 2, а потому вероятности выпадения герба и решетки равны 7г-

Однако этих соображений недостаточно для развития теории. Методологическое определение не дает численных значений. Не все вероятности можно оценивать как пределы частот, и неясно, сколько опытов надо брать.

На основе идеи равновозможности можно решить ряд задач, но в большинстве практических ситуаций применить ее нельзя. Например, для оценки вероятности дефектности единицы продукции.

Поэтому' перейдем к определениям в рамках аксиоматического подхода на базе математической модели, предложенной А.Н. Колмогоровым (1933).

Определение 1. Пусть конечное множество Q = {со} является пространством элементарных событий, соответствующим некоторому опыт}'. Пусть каждому со е Q поставлено в соответствие неотрицательное число Р((0), называемое вероятностью элементарного события со, причем сумма вероятностей всех элементарных событий равна 1, т.е.

Тогда пара {?2, Р}, состоящая из конечного множества Q и неотрицательной функции Р, определенной на ?2 и удовлетворяющей условию (1), называется вероятностным пространством. Вероятность события А равна сумме вероятностей элементарных событий, входящих в А, т.е. определяется равенством

Сконструирован математический объект, основной при построении вероятностных моделей. Рассмотрим примеры.

Пример 1. Бросанию монеты соответствует вероятностное пространство с

где Г — выпал герб; Р — выпала решетка.

Пример 2. Проверке качества одной единицы продукции (в ситуации, описанной в романе А.Н. Толстого «Хождение по мукам» — см. выше) соответствует вероятностное пространство с

  • где Б — дефектная единица продукции; Г — годная единица продукции; значение вероятности 0,23 взято из слов Струкова.
  • Приведенное выше определение вероятности Р(А) согласуется с интуитивным представлением о связи вероятностей события и входящих в него элементарных событий, а также с распространенным мнением: «вероятность события А — число от 0 до 1, которое представляет собой предел частоты реализации события А при неограниченном числе повторений одного и того же комплекса условий».
  • Из определения вероятности события, свойств символа суммирования и равенства (1) вытекает, что

Для несовместных событий А и В согласно формуле (3)

Последнее утверждение называют также теоремой сложения вероятностей.

Источник: https://bstudy.net/689373/sotsiologiya/veroyatnost_sobytiya

Теория вероятности формулы и примеры решения задач

События, которые происходят реально или в нашем воображении, можно разделить на 3 группы. Это достоверные события, которые обязательно произойдут, невозможные события и случайные события. Теория вероятностей изучает случайные события, т.

е. события, которые могут произойти или не произойти. В данной статье будет представлена в кратком виде теория вероятности формулы и примеры решения задач по теории вероятности, которые будут в 4 задании ЕГЭ по математике (профильный уровень).

Зачем нужна теория вероятности

Исторически потребность исследования этих проблем возникла в XVII веке в связи с развитием и профессионализацией азартных игр и появлением казино. Это было реальное явление, которое требовало своего изучения и исследования.

Игра в карты, кости, рулетку создавала ситуации, когда могло произойти любое из конечного числа равновозможных событий. Возникла необходимость дать числовые оценки возможности наступления того или иного события.

В XX веке выяснилось, что эта, казалось бы, легкомысленная наука играет важную роль в познании фундаментальных процессов, протекающих в микромире. Была создана современная теория вероятностей.

Читайте также:  Древний египет - в помощь студенту

Основные понятия теории вероятности

Объектом изучения теории вероятностей являются события и их вероятности. Если событие является сложным, то его можно разбить на простые составляющие, вероятности которых найти несложно.

Суммой событий А и В называется событие С, заключающееся в том, что произошло либо событие А, либо событие В, либо события А и В одновременно.

Произведением событий А и В называется событие С, заключающееся в том, что произошло и событие А и событие В.

События А и В называется несовместными, если они не могут произойти одновременно.

Событие А называется невозможным, если оно не может произойти. Такое событие обозначается символом .

Событие А называется достоверным, если оно обязательно произойдет. Такое событие обозначается символом .

Пусть каждому событию А поставлено в соответствие число P{А). Это число P(А) называется вероятностью события А, если при таком соответствии выполнены следующие условия.

  1. Вероятность принимает значения на отрезке от 0 до 1, т.е. .
  2. Вероятность невозможного события равна 0, т.е. .
  3. Вероятность достоверного события равна 1, т.e. .
  4. Если события A и В несовместные, то вероятность их суммы равна сумме их вероятностей, т.е. .

Важным частным случаем является ситуация, когда имеется равновероятных элементарных исходов, и произвольные  из этих исходов образуют события А. В этом случае вероятность можно ввести по формуле . Вероятность, введенная таким образом, называется классической вероятностью. Можно доказать, что в этом случае свойства 1-4 выполнены.

Задачи по теории вероятностей, которые встречаются на ЕГЭ по математике, в основном связаны с классической вероятностью. Такие задачи могут быть очень простыми. Особенно простыми являются задачи по теории вероятностей в демонстрационных вариантах. Легко вычислить число благоприятных исходов , прямо в условии написано число всех исходов .

Ответ получаем по формуле .

Пример задачи из ЕГЭ по математике по определению вероятности

На столе лежат 20 пирожков — 5 с капустой, 7 с яблоками и 8 с рисом. Марина хочет взять пирожок. Какова вероятность, что она возьмет пирожок с рисом?

Решение

Всего равновероятных элементарных исходов 20, то есть Марина может взять любой из 20 пирожков. Но нам нужно оценить вероятность того, что Марина возьмет пирожок с рисом, то есть , где А — это выбор пирожка с рисом. Значит у нас количество благоприятных исходов (выборов пирожков с рисом) всего 8. Тогда вероятность будет определяться по формуле:

   

Ответ: 0,4

Независимые, противоположные и произвольные события

Однако в открытом банке заданий стали встречаться и более сложные задания. Поэтому обратим внимание читателя и на другие вопросы, изучаемые в теории вероятностей.

События А и В называется независимыми, если вероятность каждого из них не зависит от того, произошло ли другое событие.

Теоремы сложения и умножения вероятностей, формулы

Последние 2 утверждения называются теоремами сложения и умножения вероятностей.

Не всегда подсчет числа исходов является столь простым. В ряде случаев необходимо использовать формулы комбинаторики. При этом наиболее важным является подсчет числа событий, удовлетворяющих определенным условиям. Иногда такого рода подсчеты могут становиться самостоятельными заданиями.

Рассмотрим теперь другой случай с нашими учениками. Сколькими способами можно усадить 2 учеников на 6 свободных мест? Первый ученик займет любое из 6 мест. Каждому из этих вариантов соответствует 5 способов занять место второму ученику. Чтобы найти число всех вариантов, надо найти произведение .

  • В общем случае ответ на этот вопрос дает формула для числа размещений из n элементов по k элементам
  • В нашем случае .

И последний случай из этой серии. Сколькими способами можно выбрать трех учеников из 6? Первого ученика можно выбрать 6 способами, второго — 5 способами, третьего — четырьмя.

Но среди этих вариантов 6 раз встречается одна и та же тройка учеников. Чтобы найти число всех вариантов, надо вычислить величину: .

В общем случае ответ на этот вопрос дает формула для числа сочетаний из элементов по элементам:

В нашем случае .

Примеры решения задач из ЕГЭ по математике на определение вероятности

Задача 1. Из сборника под ред. Ященко.

На тарелке 30 пирожков: 3 с мясом, 18 с капустой и 9 с вишней. Саша наугад выбирает один пирожок. Найдите вероятность того, что он окажется с вишней.

  1. Решение:
  2. .
  3. Ответ: 0,3.

Задача 2. Из сборника под ред. Ященко.

В каждой партии из 1000 лампочек в среднем 20 бракованных. Найдите вероятность того, что наугад взятая лампочка из партии будет исправной.

  • Решение: Количество исправных лампочек 1000-20=980. Тогда вероятность того, что взятая наугад лампочка из партии будет исправной:
  • Ответ: 0,98.
  • Задача 3.

Вероятность того, что на тестировании по математике учащийся У. верно решит больше 9 задач, равна 0,67. Вероятность того, что У. верно решит больше 8 задач, равна 0,73. Найдите вероятность того, что У. верно решит ровно 9 задач.

Решение:

Если мы вообразим числовую прямую и на ней отметим точки 8 и 9, то мы увидим, что условие «У. верно решит ровно 9 задач» входит в условие «У. верно решит больше 8 задач», но не относится к условию «У. верно решит больше 9 задач».

Однако, условие «У. верно решит больше 9 задач» содержится в условии «У. верно решит больше 8 задач». Таким образом, если мы обозначим события: «У. верно решит ровно 9 задач» — через А, «У. верно решит больше 8 задач» — через B, «У. верно решит больше 9 задач» через С. То решение будет выглядеть следующим образом:

  1. .
  2. Ответ: 0,06.
  3. Задача 4.

На экзамене по геометрии школьник отвечает на один вопрос из списка экзаменационных вопросов. Вероятность того, что это вопрос по теме «Тригонометрия», равна 0,2. Вероятность того, что это вопрос по теме «Внешние углы», равна 0,15. Вопросов, которые одновременно относятся к этим двум темам, нет. Найдите вероятность того, что на экзамене школьнику достанется вопрос по одной из этих двух тем.

Решение.

Давайте подумаем какие у нас даны события. Нам даны два несовместных события. То есть либо вопрос будет относиться к теме «Тригонометрия», либо к теме «Внешние углы». По теореме вероятности вероятность несовместных событий равна сумме вероятностей каждого события, мы должны найти сумму вероятностей этих событий, то есть:

  • Ответ: 0,35.
  • Задача 5.

Помещение освещается фонарём с тремя лампами. Вероятность перегорания одной лампы в течение года равна 0,29. Найдите вероятность того, что в течение года хотя бы одна лампа не перегорит.

Решение:

Рассмотрим возможные события. У нас есть три лампочки, каждая из которых может перегореть или не перегореть независимо от любой другой лампочки. Это независимые события.

Тогда укажем варианты таких событий. Примем обозначения: — лампочка горит, — лампочка перегорела. И сразу рядом подсчитаем вероятность события.

Например, вероятность события, в котором произошли три независимых события «лампочка перегорела», «лампочка горит», «лампочка горит»: , где вероятность события «лампочка горит» подсчитывается как вероятность события, противоположного событию «лампочка не горит», а именно: .

    Заметим, что благоприятных нам несовместных событий всего 7. Вероятность таких событий равна сумме вероятностей каждого из событий: .

    • Ответ: 0,975608.
    • Еще одну задачку вы можете посмотреть на рисунке:
    • Таким образом, мы с вами поняли, что такое теория вероятности формулы и примеры решения задач по которой вам могут встретиться в варианте ЕГЭ.

    Источник: https://repetitor-mathematics.ru/teoriya-veroyatnosti-formulyi-i-primeryi-resheniya-zadach/

    Ссылка на основную публикацию