Формулы сокращенного умножения, квадрат суммы и разности — в помощь студенту

  • 1) Формулы сокращенного умножения, квадрат  суммы и разности - в помощь студенту Разность квадратов
  • 2) Формулы сокращенного умножения, квадрат  суммы и разности - в помощь студенту Квадрат суммы
  • 3) Формулы сокращенного умножения, квадрат  суммы и разности - в помощь студенту Квадрат разности
  • 4) Формулы сокращенного умножения, квадрат  суммы и разности - в помощь студенту Сумма кубов
  • 5) Формулы сокращенного умножения, квадрат  суммы и разности - в помощь студенту Разность кубов

Комментарий репетитора по математике:
Перед вами базовый школьный комплект формул, изучаемый в 7 классе по всем программам. Наибольшая доля задач в учебниках приходится на применение первых трех формул.

alt

Узнай стоимость своей работы

Бесплатная оценка заказа!

Оценим за полчаса!

Трехчлены и называются неполными квадратами суммы и разности соответственно

Из методики репетитора по заучиванию названий: Примите к сведению, что названия всех формул даются по самой короткой их части.

Например, в формуле разность квадратов это левая часть, а в формуле квадрат суммы — правая. В начале названия формулы указывается последнее действие в этой короткой части.

Например, в формуле разность квадратов -это разность, а в формуле квадрат суммы — это квадрат.

Читайте также:  Полное приращение и полный дифференциал - в помощь студенту

Дополнительные формулы, изучаемые в математических классах:

  1. 6)Формулы сокращенного умножения, квадрат  суммы и разности - в помощь студенту Куб суммы
  2. 7) Формулы сокращенного умножения, квадрат  суммы и разности - в помощь студенту Куб разности
  3. 8) Формулы сокращенного умножения, квадрат  суммы и разности - в помощь студенту Квадрат суммы трех чисел
  4. Комментарий репетитора по математике: Если в последней формуле поставить знак минус, например перед b или c (или сразу оба знака), то в правой части знак минус появится перед тем удвоенным произведением, которое эту букву содержит (или два минуса дадут снова плюс).

Другие полезные алгебраические тождества:

выражение суммы квадратов двух чисел через их сумму

alt

Узнай стоимость своей работы

Бесплатная оценка заказа!

Оценим за полчаса!

выражение суммы квадратов двух чисел через их разность

Комментарий репетитора по математике: Эти тождества часто используются составителями конкурсных задач по математике (в том числе и на ЕГЭ) для того, чтобы замаскировать в уравнениях и неравенствах замену переменной. Если в вашем задании присутствует сумма квадратов двух выражений попробуйте перейти к сумме или к разности.

  • Бином Ньютона
  • Разность n-ных степеней
  • Сумма нечетных степеней
  • Колпаков Александр Николаевич, профессиональный репетитор по математике Москва, Строгино.
Читайте также:  Экспериментальное определение магнитных моментов - в помощь студенту

Источник: https://ankolpakov.ru/2011/01/03/formuly-sokrashhennogo-umnozheniya-i-drugie-poleznye-algebraicheskie-tozhdestva/

Персональный сайт — Формулы сокращенного умножения

При расчёте алгебраических многочленов для упрощения вычислений используются формулы сокращенного умножения. Всего таких формул семь. Их все необходимо знать наизусть.

Следует также помнить, что вместо a и b в формулах могут стоять как числа, так и любые другие алгебраические многочлены.

Разность квадратов

Формулы сокращенного умножения, квадрат  суммы и разности - в помощь студенту

  • Разность квадратов двух чисел равна произведению разности этих чисел и их суммы.
  • a2 — b2 = (a — b)(a + b)

Квадрат суммы 

Формулы сокращенного умножения, квадрат  суммы и разности - в помощь студенту

  1. Квадрат суммы двух чисел равен квадрату первого числа плюс удвоенное произведение первого числа на второе плюс квадрат второго числа.
  2. (a + b)2 = a2 + 2ab + b2
  3. Обратите внимание, что с помощью этой формулы сокращённого умножения легко находить квадраты больших чисел, не используя калькулятор или умножение в столбик. Поясним на примере:
  4. Найти 1122.
  5. Разложим 112 на сумму чисел, чьи квадраты мы хорошо помним.2 
    112 = 100 + 1
  6. Запишем сумму чисел в скобки и поставим над скобками квадрат. 
    1122 = (100 + 12)2
  7. Воспользуемся формулой квадрата суммы: 
    1122 = (100 + 12)2 = 1002 + 2 x 100 x 12 + 122 = 10 000 + 2 400 + 144 = 12 544
  8. Помните, что формула квадрат суммы также справедлива для любых алгебраических многочленов.
  9. (8a + с)2 = 64a2 + 16ac + c2

Предостережение!!!

(a + b)2 не равно a2 + b2

Квадрат разности

Формулы сокращенного умножения, квадрат  суммы и разности - в помощь студенту

  • Квадрат разности двух чисел равен квадрату первого числа минус удвоенное произведение первого на второе плюс квадрат второго числа.
  • (a — b)2 = a2 — 2ab + b2
  • Также стоит запомнить весьма полезное преобразование:
  • (a — b)2 = (b — a)2
    Формула выше доказывается простым раскрытием скобок:
  • (a — b)2 = a2 — 2ab + b2 = b2 — 2ab + a2 = (b — a)2
     

Куб суммы

Формулы сокращенного умножения, квадрат  суммы и разности - в помощь студенту

  1. Куб суммы двух чисел равен кубу первого числа плюс утроенное произведение квадрата первого числа на второе плюс утроенное произведение первого на квадрат второго плюс куб второго.
  2. (a + b)3 = a3 + 3a2b + 3ab2 + b3
  3. Запомнить эту «страшную» на вид формулу довольно просто.
  4. Выучите, что в начале идёт a3.
  5. Два многочлена посередине имеют коэффициенты 3.

Вспомним, что любое число в нулевой степени есть 1. (a0 = 1, b0 = 1). Легко заметить, что в формуле идёт понижение степени a и увеличение степени b. В этом можно убедиться: 
(a + b)3 = a3b0 + 3a2b1 + 3a1b2 + b3a0 = a3 + 3a2b + 3ab2 + b3

Предостережение!!!

(a + b)3 не равно a3 + b3

Куб разности

Формулы сокращенного умножения, квадрат  суммы и разности - в помощь студенту

  • Куб разности двух чисел равен кубу первого числа минус утроенное произведение квадрата первого числа на второе плюс утроенное произведение первого числа на квадрат второго минус куб второго.
  • (a — b)3 = a3 — 3a2b + 3ab2 — b3

Запоминается эта формула как и предыдущая, но только с учётом чередования знаков «+» и «-». Перед первым членом a3стоит «+» (по правилам математики мы его не пишем). Значит, перед следующим членом будет стоять «-», затем опять «+» и т.д.

(a — b)3 = + a3 — 3a2b + 3ab2 — b3 = a3 — 3a2b + 3ab2 — b3 

Сумма кубов (Не путать с кубом суммы!)

Формулы сокращенного умножения, квадрат  суммы и разности - в помощь студенту

  1. Сумма кубов равна произведению суммы двух чисел на неполный квадрат разности.
  2. a3 + b3 = (a + b)(a2 — ab + b2)
  3. Сумма кубов — это произведение двух скобок.
  4. Первая скобка — сумма двух чисел.

Вторая скобка — неполный квадрат разности чисел. Неполным квадратом разности называют выражение:

a2- ab + b2

Данный квадрат неполный, так как посередине вместо удвоенного произведения обычное произведение чисел.

Разность кубов (Не путать с кубом разности!!!) 

Формулы сокращенного умножения, квадрат  суммы и разности - в помощь студенту

  • Разность кубов равна произведению разности двух чисел на неполный квадрат суммы.
  • a3 — b3 = (a — b)(a2 + ab + b2)

Будьте внимательны при записи знаков. Следует помнить, что все формулы, приведённые выше, используется также и справа налево.

Трудно запоминаются формулы сокращенного умножения? Делу легко помочь. Нужно просто запомнить, как изображается  такая простая вещь, как треугольник Паскаля. Тогда вы вспомните эти формулы всегда и везде, вернее, не вспомните, а восстановите.

Что же такое треугольник Паскаля? Этот треугольник состоит из коэффициентов, которые входят в разложение любой степени двучлена вида  в многочлен.

Разложим, например, :

Формулы сокращенного умножения, квадрат  суммы и разности - в помощь студенту

В этой записи легко запоминается, что вначале стоит куб первого, а в конце – куб второго числа. А вот что посередине – запоминается сложно. И даже то, что в каждом следующем слагаемом степень одного множителя все время уменьшается, а второго – увеличивается – несложно заметить и запомнить, труднее дело обстоит с запоминанием  коэффициентов и знаков (плюс там или минус?).

Итак, сначала коэффициенты. Не надо их запоминать! На полях тетрадки быстренько рисуем треугольник Паскаля, и вот они – коэффициенты, уже перед нами. Рисовать начинаем с трех единичек, одна сверху, две ниже, правее и левее  — ага, уже треугольник получается:

Первая строка, с одной единичкой – нулевая. Потом идет первая, вторая, третья и так далее. Чтобы получить вторую строку, нужно по краям снова приписать единички, а в центре записать число, полученное сложением двух чисел, стоящих над ним:

  1. Записываем третью строку: опять по краям единицы, и опять, чтобы получить следующее число в новой строке, сложим числа, стоящие над ним в предыдущей:
  2. Как вы уже догадались, мы получаем в каждой строке коэффициенты из разложения двучлена в многочлен:
  3. Ну а знаки запомнить еще проще: первый – такой же, как в раскладываемом двучлене (раскладываем сумму – значит, плюс, разность – значит, минус), а дальше знаки чередуются!

Вот такая это  полезная штука – треугольник Паскаля. Пользуйтесь!

Источник: http://ychitelll.ucoz.ru/index/formuly_sokrashhennogo_umnozhenija/0-102

Формулы сокращенного умножения с примерами

Формулы сокращенного умножения, квадрат  суммы и разности - в помощь студенту

Формулами сокращенного умножения (ФСУ) называют несколько наиболее часто встречающихся в практике случаев умножения многочленов

ФСУ используются при упрощении алгебраических выражений (в том числе в работе с алгебраическими дробями),решении уравнений и неравенств, при разложении на множители и т.д. Ниже мы рассмотрим наиболее популярные формулы и разберем как они получаются.

Пусть у нас возводиться в квадрат сумма двух одночленов, вот так: ((a+b)^2). Возведение в квадрат – это умножение числа или выражения само на себя, то есть, ((a+b)^2=(a+b)(a+b)). Теперь мы можем просто раскрыть скобки, перемножив их как делали это здесь, и привести подобные слагаемые. Получаем:

Формулы сокращенного умножения, квадрат  суммы и разности - в помощь студенту

А если мы опустим промежуточные вычисления и запишем только начальное и конечное выражения, получим окончательную формулу:

Квадрат суммы: ((a+b)^2=a^2+2ab+b^2)

Большинство учеников учат ее наизусть. А вы теперь знаете, как эту формулу вывести, и если вдруг забудете – всегда можете это сделать. Хорошо, но как ей пользоваться и зачем эта формула нужна? Квадрат суммы позволяет быстро писать результат возведения суммы двух слагаемых в квадрат. Давайте посмотрим на примере.

Пример. Раскрыть скобки: ((x+5)^2) Решение:

Формулы сокращенного умножения, квадрат  суммы и разности - в помощь студенту

Обратите внимание, насколько быстрее и меньшими усилиями получен результат во втором случае. А когда вы эту и другие формулы освоите до автоматизма – будет еще быстрее: вы сможете просто сразу же писать ответ. Поэтому они и называются формулы СОКРАЩЕННОГО умножения. Так что, знать их и научиться применять – точно стоит.

На всякий случай отметим, что в качестве (a) и (b) могут быть любые выражения – принцип остается тем же. Например:

Формулы сокращенного умножения, квадрат  суммы и разности - в помощь студенту

Если вы вдруг не поняли какие-то преобразования в двух последних примерах – повторите свойства степеней и тему приведения одночлена к стандартному виду.

Пример. Преобразуйте выражение ((1+5x)^2-12x-1 ) в многочлен стандартного вида.

Решение:

((1+5x)^2-12x-1= ) Раскроем скобки, воспользовавшись формулой квадрата суммы…
(=1+10x+25x^2-12x-1=) …и приведем подобные слагаемые.
(=25x^2-2x) Готово.

Ответ: (25x^2-2x).

Важно! Необходимо научиться пользоваться формулами не только в «прямом», но и в «обратном» направлении.

Пример. Вычислите значение выражения ((368)^2+2·368·132+(132)^2) без калькулятора.

Решение:

((368)^2+2·368·132+(132)^2=) Мда… возводить в квадрат трехзначные числа, перемножить их же, а потом все это складывать – удовольствие ниже среднего. Давайте искать другой путь: обратите внимание, что данное нам числовое выражение очень похоже на правую часть формулы. Применим ее в обратную сторону: (a^2+2ab+b^2=(a+b)^2)
(=(368+132)^2=) Вот теперь вычислять гораздо приятнее!
(=(500)^2=250 000.) Готово.

Ответ: (250 000).

Выше мы нашли формулу для суммы одночленов. Давайте теперь найдем формулу для разности, то есть, для ((a-b)^2):

Формулы сокращенного умножения, квадрат  суммы и разности - в помощь студенту

В более краткой записи имеем:

Квадрат разности: ((a-b)^2=a^2-2ab+b^2)

Применяется она также, как и предыдущая.

Пример. Упростите выражение ((2a-3)^2-4(a^2-a)) и найдите его значение при (a=frac{17}{8}).

Решение:

((2a-3)^2-4(a^2-a)=) Если сразу подставить дробь в выражение – придется возводить ее в квадрат и вообще делать объемные вычисления. Попробуем сначала упростить выражение, воспользовавшись формулой выше и раскрыв скобки.
(=4a^2-12a+9-4a^2+4a=) Теперь приведем подобные слагаемые.
(=-8a+9=) Вот теперь подставляем и наслаждаемся простотой вычислений.
(=-8·frac{17}{8}+9=-17+9=8) Пишем ответ.

Ответ: (8).

Итак, мы разобрались с ситуациями произведения двух скобок с плюсом в них и двух скобок с минусом. Остался случай произведения одинаковых скобок с разными знаками. Смотрим, что получится:

Формулы сокращенного умножения, квадрат  суммы и разности - в помощь студенту

Получили формулу:

Разность квадратов (a^2-b^2=(a+b)(a-b))

Эта формула одна из наиболее часто применяемых при разложении на множители и работе с алгебраическими дробями. 

Пример. Сократите дробь (frac{x^2-9}{x-3}).

Решение:

(frac{x^2-9}{x-3})(=) Да, я знаю, что рука так и тянется сократить иксы и девятку с тройкой – однако так делать ни в коем случае нельзя, ведь и в числителе, и в знаменателе стоит минус! Попробуем воспользоваться формулой.
(=) (frac{x^2-3^2}{x-3})(=)(frac{(x+3)(x-3)}{x-3})(=) Вот теперь все плюсы и минусы попрятались в скобки, и значит без проблем можем сокращать одинаковые скобки.
(=x+3) Готов ответ.

Ответ: (x+3).

Пример.Разложите на множители (25x^4-m^{10} t^6). Решение:

(25x^4-m^{10} t^6) Воспользуемся формулами степеней: ((a^n )^m=a^{nm}) и (a^n b^n=(ab)^n).
(=(5x^2 )^2-(m^5 t^3 )^2=) Ну, а теперь пользуемся формулой (a^2-b^2=(a+b)(a-b)), где (a=5x^2) и (b=m^5 t^3).
(=(5x^2-m^5 t^3 )(5x^2+m^5 t^3 )) Готов ответ.
Читайте также:  Формирование микенской цивилизации - в помощь студенту

Это три основные формулы, знать которые нужно обязательно! Есть еще формулы с кубами (см. выше), их тоже желательно помнить либо уметь быстро вывести. Отметим также, что в практике часто встречаются сразу несколько таких формул в одной задаче – это нормально. Просто приучайтесь замечать формулы и аккуратно применяйте их, и все будет хорошо.

Пример (повышенной сложности!).Сократите дробь (frac{x^2-4xy-9+4y^2}{x-2y+3}) . Решение:

(frac{x^2-4xy-9+4y^2}{x-2y+3})(=) На первый взгляд тут тихий ужас и сделать с ним ничего нельзя (вариант «лечь и помереть» всерьез не рассматриваем). Однако давайте попробуем поменять два последних слагаемых числителя местами и добавим скобки (просто для наглядности).
(frac{(x^2-4xy+4y^2)-9}{x-2y+3})(=)
  • Теперь немного преобразуем слагаемые в скобке: (4xy) запишем как (2·x·2y),
  • а (4y^2) как ((2y)^2).
(frac{(x^2-4xy+(2y)^2)-9}{x-2y+3})(=) Теперь приглядимся – и заметим, что в скобке у нас получилась формула квадрата разности, у которой (a=x), (b=2y). Сворачиваем по ней к виду скобки в квадрате. И одновременно представляем девятку как (3) в квадрате.
(frac{(x-2y)^2-3^2}{x-2y+3})(=) Еще раз внимательно смотрим на числитель… думаем… думаем… и замечаем формулу разности квадратов, у которой (a=(x-2y)), (b=3). Раскладываем по ней к произведению двух скобок.
(frac{(x-2y-3)(x-2y+3)}{x-2y+3})(=) И вот теперь сокращаем вторую скобку числителя и весь знаменатель.
(x-2y-3) Готов ответ.

Скачать статью

Источник: http://cos-cos.ru/math/140/

Формулы сокращённого умножения

При расчёте алгебраических многочленов для упрощения вычислений используются формулы сокращенного умножения. Всего таких формул семь. Их все необходимо знать наизусть.

Следует также помнить, что вместо «a» и «b» в формулах могут стоять как числа, так и любые другие алгебраические многочлены.

Разность квадратов

Запомните!

Разность квадратов двух чисел равна произведению разности этих чисел и их суммы.

a2 − b2 = (a − b)(a + b)

Примеры:

  • 152 − 22 = (15 − 2)(15 + 2) = 13 · 17 = 221
  • 9a2 − 4b2с2 = (3a − 2bc)(3a + 2bc)

Квадрат суммы

Запомните!

Квадрат суммы двух чисел равен квадрату первого числа плюс удвоенное произведение первого числа на второе плюс квадрат второго числа.

(a + b)2 = a2 + 2ab + b2

Обратите внимание, что с помощью этой формулы сокращённого умножения легко находить квадраты больших чисел, не используя калькулятор или умножение в столбик. Поясним на примере:

Найти 1122.

  • Разложим 112 на сумму чисел, чьи квадраты мы хорошо помним. 112 = 100 + 1
  • Запишем сумму чисел в скобки и поставим над скобками квадрат. 1122 = (100 + 12)2
  • Воспользуемся формулой квадрата суммы: 1122 = (100 + 12)2 = 1002 + 2 · 100 · 12 + 122 = 10 000 + 2 400 + 144 = 12 544

Помните, что формула квадрат суммы также справедлива для любых алгебраических многочленов.

  • (8a + с)2 = 64a2 + 16ac + c2

Предостережение!

(a + b)2 не равно (a2 + b2)

Квадрат разности

Запомните!

Квадрат разности двух чисел равен квадрату первого числа минус удвоенное произведение первого на второе плюс квадрат второго числа.

(a − b)2 = a2 − 2ab + b2

Также стоит запомнить весьма полезное преобразование:

(a − b)2 = (b − a)2

Формула выше доказывается простым раскрытием скобок:

(a − b)2 = a2 −2ab + b2 = b2 − 2ab + a2 = (b − a)2 Запомните!

Куб суммы двух чисел равен кубу первого числа плюс утроенное произведение квадрата первого числа на второе плюс утроенное произведение первого на квадрат второго плюс куб второго.

(a + b)3 = a3 + 3a2b + 3ab2 + b3

Запомнить эту «страшную» на вид формулу довольно просто.

  • Выучите, что в начале идёт «a3».
  • Два многочлена посередине имеют коэффициенты 3.
  • Вспомним, что любое число в нулевой степени есть 1. (a0 = 1, b0 = 1). Легко заметить, что в формуле идёт понижение степени «a» и увеличение степени «b». В этом можно убедиться: (a + b)3 = a3b0 + 3a2b1 + 3a1b2 + b3a0 = a3 + 3a2b + 3ab2 + b3

Предостережение!

(a + b)3 не равно a3 + b3

Куб разности

Запомните!

Куб разности двух чисел равен кубу первого числа минус утроенное произведение квадрата первого числа на второе плюс утроенное произведение первого числа на квадрат второго минус куб второго.

(a − b)3 = a3 − 3a2b + 3ab2 − b3

Запоминается эта формула как и предыдущая, но только с учётом чередования знаков «+» и «−». Перед первым членом «a3 » стоит «+» (по правилам математики мы его не пишем). Значит, перед следующим членом будет стоять «−», затем опять «+» и т.д.

(a − b)3 = + a3 − 3a2b + 3ab2 − b3 = a3 − 3a2b + 3ab2 − b3

Сумма кубов

Не путать с кубом суммы!

Запомните!

Сумма кубов равна произведению суммы двух чисел на неполный квадрат разности.

a3 + b3 = (a + b)(a2 − ab + b2)

Сумма кубов — это произведение двух скобок.

  • Первая скобка — сумма двух чисел.
  • Вторая скобка — неполный квадрат разности чисел. Неполным квадратом разности называют выражение: (a2− ab + b2) Данный квадрат неполный, так как посередине вместо удвоенного произведения обычное произведение чисел.

Запомните!

Разность кубов равна произведению разности двух чисел на неполный квадрат суммы.

a3 − b3 = (a − b)(a2 + ab + b2)

Будьте внимательны при записи знаков.

Применение формул сокращенного умножения

  • Следует помнить, что все формулы, приведённые выше, используется также и справа налево.
  • Многие примеры в учебниках рассчитаны на то, что вы с помощью формул соберёте многочлен обратно.
  • Примеры:
  • a2 + 2a + 1 = (a + 1)2
  • (aс − 4b)(ac + 4b) = a2c2 − 16b2

Таблицу со всеми формулами сокращённого умножения вы можете скачать в разделе «Шпаргалки».

Источник: http://math-prosto.ru/?page=pages%2Ffsu%2Fshort_multiplication_formula.php

Фсу – формулы сокращённого умножения по алгебре за 7 класс с примерами

Основная задача формул сокращённого умножения

Формулы сокращённого умножения (ФСУ) нужны для того, чтобы умножать и возводить в степень числа, выражения, в том числе многочлены. То есть, при помощи формул можно работать с числами значительно быстрее и проще. Таким образом можно из сложного уравнения сделать обычное, что упростит задачу.

Таблица с формулами сокращённого умножения

НазваниеФормулаКак читается
Квадрат суммы Квадрат первого выражения плюс удвоенного произведение первого и второго выражения, плюс квадрат второго выражения.
Квадрат разности   Квадрат разности двух выражений равен квадрату первого выражения, минус удвоенное произведение первого выражения на второе, плюс квадрат второго выражения.
Куб суммы Куб разности двух выражений равен кубу первого выражения плюс утроенное произведение первого выражения в квадрате на второе выражение, плюс утроенное произведение первого выражения на второе в квадрате, плюс второе выражение в кубе.
Куб разности Куб разности двух величин равен первое выражение в кубе минус утроенное произведение первого выражения в квадрате на второе выражение, плюс утроенное произведение первого выражения на второе в квадрате, минус второе выражение в кубе.
Разность квадратов Разность квадратов первого и второго выражений равен произведению разности двух выражений и их суммы.
Сумма кубов Произведение суммы двух величин на неполный квадрат разности равно сумме их кубов.
Разность кубов Произведение разности двух выражений на неполный квадрат суммы равно разности их кубов.

Формулы сокращенного умножения (скачать таблицу для печати)

Обратите внимание на первые четыре формулы. Благодаря им можно возводить в квадрат или куб суммы (разности) двух выражений. Что касается пятой формулы, её нужно применять, чтобы вкратце умножить разность или сумму двух выражений.

Две последние формулы (6 и 7) применяются, чтобы умножать суммы обоих выражений на их неполный квадрат разности или суммы.

Вышеперечисленные формулы довольно-таки часто нужны на практике. Именно поэтому их желательно знать наизусть.

Если вам попался пример, разложить многочлен на множители, тогда во многих случаях нужно левую и правую часть переставить местами.

Такую же процедуру можно проделывать и с остальными формулами.

Доказательство ФСУ

Шаг первый.

Возведём a + b во вторую степень. Для этого степень трогать не будем, а выполним банальное умножение:  = x .

Шаг второй. Теперь и выносим за скобки: x + x .

Шаг третий. Раскрываем скобки: x + x + x + x .

Шаг четвёртый. Умножаем, не забывая о знаках: x + x + .

Шаг пятый. Упрощаем выражение: .

Точно так же можно доказать абсолютно любую формулу сокращённого умножения.

Примеры и решения с помощью ФСУ

Как правило, эти семь формул применяются тогда, когда нужно упростить выражение, чтобы решить какое-либо уравнение и даже обычный пример.

Пример 1

  • Задание
  • Упростите выражение:
  • Как видно, к этому примеру подходит первая формула сокращённого умножения – Квадрат суммы.
  • Решение

Исходя из первой формулы надо пример разложить на множители. Для этого смотрим на формулу и вместо букв подставляем цифры. В нашем случае «а» – это 3x, а «b» – это 5:

  1. x x +
  2. Считаем правую часть и записываем результат. У нас получается:
  3. + x x +
  4. В примере надо умножить всё то, что умножается и сразу получаем ответ:

Конечно же, есть примеры и с дробями. Но, если научитесь решать простые примеры, тогда другие виды вам будут не страшны.

Пример 2

  • Задание
  • Упростите выражение
  • Решение
  • = – x x + =

Пример 3

  1. Задание
  2. Представьте в виде квадрата двучлена трёхчлен
  3. Решение
  4. Здесь квадраты выражений – и
  5. Выражения, которые возводились в квадрат – и
  6. Удвоенное произведение этих выражений – , который совпадает с со вторым членом трёхчлена (со знаком «плюс), значит,

Итак, как видно, ничего сложно в примерах нет. Главное, знать формулы, где их можно применять, а где можно обойтись и без них.

Полезные источники

  1. Арефьева И. Г., Пирютко О. Н. Алгебра: учебник пособие для 7 класса учреждений общего среднего образования: Минск “Народная Асвета”, 2017 – 304 с.
  2. Никольский С. М., Потапов М. К. Алгебра 7 класс: М: 2015 – 287 с.
  3. Рубин А. Г., Чулков П. В. Алгебра. 7 класс. М: 2015 – 224 с.

Источник: https://NauchnieStati.ru/spravka/formuly-sokrashhjonnogo-umnozhenija/

Ссылка на основную публикацию