Опыты резерфорда — в помощь студенту

Опыты Резерфорда - в помощь студентуОпыты Резерфорда по рассеянию альфа-частиц.Ядерная модель атома.

alt

Узнай стоимость своей работы

Бесплатная оценка заказа!

Оценим за полчаса!

Известно, что слово «атом» в переводе с греческого означает «неделимый». Английский физик Дж. Томсон разработал (в к. ХIХ в.) первую «модель атома», согласно которой атом — положительно заряженная сфера, внутри которой плавали электроны.

Модель, предложенная Томсоном, нуждалась в экспериментальной проверке, т. к. явления радиоактивности, фотоэффекта нельзя было объяснить, применив модель атома Томсона. Поэтому в 1911 году Эрнест Резерфорд провел ряд опытов по исследованию состава и строения атомов.

В этих опытах узкий пучок  a -частиц, испускаемых радиоактивным веществом, направлялся на тонкую золотую фольгу. За ней помещался экран, способный светиться под ударами быстрых частиц.

Было обнаружено, что большинство – a-частиц отклоняется от прямолинейного распространения после прохождения фольги, т. е. рассеивается, а некоторые a-частицы отбрасываются на 1800.

Опыты Резерфорда - в помощь студентуОпыт Резерфорда по рассеянию альфа-частиц
Опыты Резерфорда - в помощь студентутраектории а-частиц, пролетающих на различных расстояниях от ядра

alt

Узнай стоимость своей работы

Бесплатная оценка заказа!
Читайте также:  Предпосылки появления философии - в помощь студенту

Оценим за полчаса!
  • Рассеяние a-частиц Резерфорд объяснил, что положительный заряд не распределен равномерно в шаре радиусом 10-10м, как предполагали ранее, а сосредоточен в центральной части атома — атомном ядре.  На основе своих опытов Резерфорд предложил планетарную модель атома. Электроны в этой модели обращаются на больших расстояниях вокруг ядра, подобно тому, как планеты обращаются вокруг Солнца. Однако такой атом согласно законам классической физики не может быть устойчивым. Электроны должны излучать, теряя энергию, и падать на ядро. В действительности все атомы устойчивы. Разрешить противоречия планетарной ядерной модели строения атома первым попытался датский физик Нильc Бор.
    Основу теории Бора составляют два постулата.
  • Первый постулат (постулат стационарных состояний): В атоме существуют стационарные квантовые состояния, не изменяющиеся с течением времени без внешнего воздействия на атом.
    В этих состояниях атом не излучает электромагнитных волн, хотя и движется с ускорением. Каждому стационарному состоянию атома соответствует определенная энергия атома. Стационарным состояниям соответствуют стационарные орбиты, по которым движутся электроны.
  • Второй постулат (правило частот): При переходе атома из одного Опыты Резерфорда - в помощь студентустационарного состояния в другое излучается или поглощается 1 фотон. Энергия излученного или поглощенного фотона равна разности энергий стационарных состояний: kn = Ek  — En  . (1) При излучении фотона k > n, при поглощении  k < n. Из формулы можно выразить частоту излучения так: ν = (En – Ek) /h.

Лазеры

На основе квантовой теории излучения были построены квантовые генераторы радиоволн и квантовые генераторы видимого света – лазеры. Лазеры создают когерентное излучение очень большой мощности. Излучение лазеров очень широко применяется в различных областях науки и техники, например, для связи в космосе, для записи и хранения информации (лазерные диски) и сварки, в медицине.

Испускание и поглощение света атомами

Согласно постулатам Бора электрон может находиться на нескольких определенных орбитах. Каждой орбите электрона соответствует определенная энергия. При переходе электрона с ближней на дальнюю орбиту атомная система поглощает квант энергии. При переходе с более удаленной орбиты электрона на ближнюю орбиту по отношению к ядру, атомная система излучает квант энергии.

Спектры

Теория Бора позволила объяснить существование линейчатых спектров.
Формула (1) даёт качественное представление о том, почему атомные спектры испускания и поглощения являются линейчатыми. В самом деле, атом может излучать волны лишь тех частот, которые соответствуют разностям значений энергии E1, E2, . . . , En, . .

Вот поэтому спектр излучения атомов состоит из отдельно расположенных резких ярких линий. Вместе с тем, атом может поглотить не любой фотон, а только тот, энергия hν которого в точности равна разности En − Ek каких-то двух разрешённых значений энергии En и Ek.

Переходя в состояние с более высокой энергией En, атомы поглощают ровно те самые фотоны, которые способны излучить при обратном переходе в исходное состояние Ek.

Попросту говоря,  атомы забирают из непрерывного спектра те линии, которые сами же и излучают; вот почему тёмные линии спектра поглощения холодного атомарного газа находятся как раз в тех местах, где расположены яркие линии спектра испускания этого же газа в нагретом состоянии.

Опыты Резерфорда - в помощь студентусплошной спектр
Опыты Резерфорда - в помощь студентуспектр испускания водорода
Опыты Резерфорда - в помощь студентуспектр поглощения водорода

Источник: http://kaplio.ru/opyty-rezerforda-po-rasseyaniyu-alfa-chastits-yadernaya-model-atoma-kvantovye-postulaty-bora-lazery-ispuskanie-i-pogloshhenie-sveta-atomami-spektry/

Урок 24. строение атома. опыты резерфорда — Физика — 11 класс — Российская электронная школа

Физика, 11 класс

Урок №24. Строение атома. Опыты Резерфорда

  • На уроке рассматриваются: понятия атомное ядро, опыты Резерфорда, планетарная модель строения атома; сравниваются модели атома Томсона и Резерфорда, даны некоторые сведения о фактах, подтверждающих сложное строение атома, о работах учёных по созданию модели строения атома.
  • Атомное ядро — тело малых размеров, в котором сконцентрирована почти вся масса и весь положительный заряд атома.
  • Размеры ядра: диаметр порядка 10-12—10-13 см (у разных ядер диаметры различны).

Размер атома: примерно 10-8 см, т. е. от 10 до 100 тысяч раз превышает размеры ядра.

Планетарная модель атома Резерфорда: в целом атом нейтрален, в центре атома расположено положительно заряжённое ядро, в котором сосредоточена почти вся масса атома, электроны движутся по орбитам вокруг ядра, заряд ядра, как и число электронов в атоме, равен порядковому номеру элемента в периодической системе Д.И.Менделеева.

  1. Ядро атома водорода названо протоном и рассматривается как элементарная частица.
  2. Ядро атома водорода имеет положительный заряд, равный по модулю заряду электрона, и массу, примерно в 1836,1 раза больше массы электрона.
  3. Частота излучений атома водорода составляет ряд серий: серия Бальмера, серия Лаймана, серия Пашена и другие, каждая из которых образуется в процессе перехода атома в одно из энергетических состояний.
  4. Обязательная литература по теме урока:
  1. Мякишев Г.Я., Буховцев Б.Б., Сотский Н.Н. Физика.11 класс. Учебник для общеобразовательных организаций М.: Просвещение, 2017. – С. 279 – 283.
  2. Степанова Г.Н. (сост.) Сборник задач по физике для 10-11 классов общеобразовательных учреждений.5-е изд., доп. — М.: «Просвещение», 1999 — С. 221-222
  3. Анциферов Л.И., Физика: электродинамика и квантовая физика. 11кл. Учебник для общеобразовательных учреждений. – М.: Мнемозина, 2001. – С. 270-274.
  4. Рымкевич А.П. Физика. Задачник. 10-11 классы. – М.: Дрофа, 2013. — С. 155 – 156.
  5. Кикоин А. К. За пределы таблицы //Квант. — 1991. — № 1. — С. 38,39,42-44

Основное содержание урока

Долгое время, физика накапливала факты о свойстве вещества для полного представления о строении атома. И только в XIX веке изучение атомического строения вещества существенно сдвинулось с точки покоя.

Большую роль в развитии атомистической теории сыграл выдающийся русский химик Дмитрий Иванович Менделеев, разработавший в 1869 году периодическую систему элементов, в которой впервые был поставлен вопрос о единой природе атомов.

Важным свидетельством сложной структуры атомов явились исследования спектров, излучаемые веществом, которые привели к открытию линейчатых спектров атомов. В начале XIX века в излучении атома водорода были открыты спектральные линии в видимой части спектра.

Идеи электронной структуры атома теоретически и гипотетически формулировались учёными. В 1896 году Хендрик Лоренц создал электронную теорию о том, что электроны являются частью атома. Эту гипотезу в 1897 году подтвердили эксперименты Джозефа Джона Томсона. Им был сформулирован вывод о том, что существуют частицы с наименьшим отрицательным зарядом — электроны и они являются частью атомов.

По мысли Томсона, положительный заряд занимает весь объём атома и распределён он в этом сферическом объёме равномерно. У более сложных атомов в положительно заряжённом шаре есть несколько электронов, так что атом подобен кексу, в котором роль изюма играют электроны. Распространённый термин этой модели — «Пудинг с изюмом» или «Булочка с изюмом».

Опыты Резерфорда - в помощь студентуОпыты Резерфорда - в помощь студенту

Таким образом, к началу XX века учёные сделали вывод о том, что атомы материи имеют сложную внутреннюю структуру.

Они являются электрически нейтральными системами, а носителями отрицательного заряда атомов являются лёгкие электроны, масса которых составляет лишь малую долю массы атомов.

Однако модель атома Томсона находилась в полном противоречии с экспериментами по изучению распределения положительных зарядов.

Электрон – наименьшая электроотрицательная заряжённая элементарная частица

Масса покоя электрона me = 9,1·10-31кг;

Опыты Резерфорда - в помощь студенту

Немецкий физик Филипп фон Ленард в 1903 году проводил опыты, в которых пучок быстрых электронов легко проходил через тонкую металлическую фольгу. На основании этого Ленард предположил, что атом состоит из нейтральных частиц или нейтральных дуплетов с совмещённым положительным и отрицательным зарядами, рассредоточенными в атоме, где большая площадь представляет собой пустоту.

Опыты Резерфорда - в помощь студенту

В 1904 году японский физик Хентаро Нагаока выдвинул гипотезу о том, что атом состоит из тяжелого положительно заряженного ядра, окруженного кольцами из большого числа электронов, колебания которых и являются причиной испускания атомных спектров, по аналогии с теорией устойчивости колец Сатурна.

Опыты Резерфорда - в помощь студенту

Но в физике уже более 200 лет существует главное правило: окончательный выбор между гипотезами может быть сделан только на основе опыта. Эксперименты, проведенные в первый раз Эрнестом Резерфордом, сыграли решающую роль в понимании структуры атома.

Источник: https://resh.edu.ru/subject/lesson/3910/conspect/

Опыты Резерфорда

  • МИНИСТЕРСТВО ВЫСШЕГО И СРЕДНЕГО СПЕЦИАЛЬНОГО ОБРАЗОВАНИЯ РФ.
  • НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ АРХИТЕКТУРНО-СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ
  • кафедра физики
  • на тему:
  • Опыты Резерфорда

Выполнил: Кузнецов И.А. (группа 226)

Проверил: Берхоер Л.Д.

Новосибирск 2000 г.

Опыты Резерфорда - в помощь студенту

Эрнест Резерфорд – один из самых знаменитых физиков первой половины XX века. Когда-то Резерфорд первый анатомировал атом, обнаружив в нем ядро. Он исследовал сложные явления, протекающие в этой поразительно малой частице вещества, а затем в своей лаборатории расщепил ядра атомов.

Еще будучи студентом 2-го курса университета Резерфорд на одной из конференций выступил с докладом на тему «Эволюция элементов». Резерфорд высказал предположение, что все химические элементы представляют собой сложные химические системы, состоящие из одних и тех же элементарных частиц. В то время атом считался неделимым – в физике господствовала теория Дальтона о неделимости атомов.

Первая попытка создания на основе накопленных экспериментальных данных модели атома принадлежит ДЖ. ДЖ. Томсону. Электроны, как думал Томсон, вкраплены в сверхминиатюрную сферу диаметром 10–8 см., в которой равномерно распределены положительные заряды.

Вместе с отрицательно заряженными электронами сфера электрически нейтральна. Это и есть атом.

В то время так думал и Резерфорд, работавший в одной лаборатории с Томсоном, и даже не мечтал, что сможет создать более совершенную модель, основанную на новых представлениях.

В 1896 г , изучая люминесценцию различных веществ, А.Беккерель случайно обнаружил, что соли урана излучают без предварительного их освещения. Это излучение обладает большой проникающей силой и способно воздействовать на фотографическую пластинку, завернутую в черную бумагу.

Резерфорд тотчас занялся изучением Беккерелиевых лучей. Он начал исследования рентгеновских лучей с проверки своего предположения о связи между рентгеновскими и беккерелиевыми лучами. Эта мысль пришла к нему в голову по очень простой причине: и те и другие производили ионизацию воздуха.

Эта идея не увенчалась успехом.

Но наиболее важным результатом Резерфорда было открытие -частиц в составе излучения, испускаемого ураном. Резерфорд поместил урановый источник в сильное магнитное поле и разделил излучение на три различных его вида. Иными словами, он открыл тогда состав радиоактивности: альфа– и бета–частицы и гамма-лучи.

Получив -частицы, Резерфорд тотчас же сделал гениальное заключение, что именно они представляют собой мощный инструмент для проникновения в глубь атома. Как подтвердилось позднее, это было абсолютно правильно. В последующих работах Резерфорд широко использовал -астицы в качестве снарядов, проникающих в сердце атома – атомное ядро.

Резерфорд открыл эманацию тория и доказал, что этот радиоактивный газ, выделяющийся из тория, представляет собой химический элемент, отличающийся от самого тория. Позднее он определил атомный вес эманации и показал, что она представляет собой благородный газ нулевой группы системы Д.И.Менделева.

Резерфорд и Фредерик Содди впервые объясняют радиоактивный распад как самопроизвольный переход одних элементов в другие. После эманации тория Резерфорд открыл эманацию радия – радон. Ученому было ясно, что радий, испуская -частицы, превращается в новое активное вещество, подобно эманации тория. Это открытие окончательно подтверждало теорию радиоактивного распада.

В начале 1903 года Резерфорд опытным путем пытается определить химический состав -частиц. Идея заключается в том, чтобы сравнить массу -частицы с массами атомов известных элементов. Опыт позволил ему первому идентифицировать -частицы с атомами гелия. Позднее это подтвердилось и спектрографически.

В 1908 году Резерфорд приступил к широким опытам по исследованию -частиц методом подсчета их с помощью сцинтилляционного счетчика Гейгера.

ВОпыты Резерфорда - в помощь студенту месте с Гейгером и Ройдсом Резерфорд произвел серию опытов, подтверждавших, что -частицы есть ничто иное как дважды ионизированные (т.е. потерявшие по 2 электрона) атомы гелия. Этот исторический опыт, благодаря которому уже ни у кого не могло остаться сомнения в правильности его теории распада, заключался в следующем:

в запаянную трубку 2 Резерфорд поместил некоторое количество радона – эманации радия. Толщина стенок этой трубки 0,01 мм. Они достаточно тонки, чтобы испускаемые радоном -частицы могли проходить через них во внешнюю трубку 3. Перед опытом трубка 3 тщательно откачивалась, и в ней спектрографическим путем нельзя было обнаружить линий гелия.

Через несколько дней в трубке 3 обнаружилось накопление газа. Повышая давление в приборе, накопившийся газ можно было сконцентрировать в трубке 1. Через трубку пропускался электрический заряд и тогда оказывалось, что в ней спектральный анализ показывает характерные линии гелия. В трубке был гелий.

Но может быть он попал в трубку 2 по недосмотру вместе с радоном, а оттуда проник в трубки 3 и 1? Контрольный опыт дал на этот вопрос отрицательный ответ. Точно в такой же прибор (в трубку 2) Резерфорд помещал не радон, а чистый гелий. Однако через несколько дней в трубке 1 линии гелия не обнаруживались. Гелий не мог пройти через стеклянные стенки трубки 2 в трубку 3.

-частицы же легко проходили через стекло и накапливались в трубке 3, а затем концентрировались в трубке 1, где и подвергались спектральному анализу, давая линии гелия.

После этого Резерфорд, вместе с Гейгером и Марсденом провели новую серию экспериментов. Результаты произвели переворот в физике. Это была наиболее драматическая глава в науке нашего времени. Резерфорд открыл атомное ядро и тем самым основал новую исключительно важную науку – ядерную физику.

Что это были за эксперименты? Резерфорд и Гейгер на первых порах продолжили наблюдения сцинтилляций, вызываемых -частицами при ударе о люминесцентный экран из сернистого цинка. Прежде всего опыты привели Резерфорда к заключению, что каждая вспышка (сцинтилляция) вызывается одной -частицей.

Таким образом оправдалось предположение, выдвинутое им ранее. Резерфорд писал тогда, что наблюдение сцинтилляций на экране из сернистого цинка представляет собой очень удобный способ счета частиц, если каждая частица вызывает вспышку.

Следовательно, если каждая вспышка вызвана одной -частицей, то перед физиками открывается возможность наблюдать за поведением отдельных атомов.

Резерфорд и Гейгер визуально подсчитали, что в продолжение секунды из излучателя в одну тысячную грамма радия вылетает 130 000 -частиц. Точность подсчета была безукоризненна.

Оба ученых, к которым позднее присоединился Марсден, помногу часов проводили в затемненной лаборатории за утомительным счетом сцинтилляций.

Гейгер рассказывал, что ему одному пришлось подсчитать в общей сложности миллион -частиц.

Свою работу начал ученик Резерфорда Марсден. Ему было поручено считать -частицы, проходящие через тонкие металлические пластинки. Эти пластинки помещались в прибор между излучателем -частиц и люминесцентным экраном.

Поручая Марсдену эту работу, Резерфорд не рассчитывал обнаружить что=либо любопытное. При условии, что модель атома Томсона правильна (а тогда не было никаких причин сомневаться в этом), опыт должен был показать, что -частицы свободно проходят через металлические преграды. Однако что-то все-таки заставило Резерфорда пойти на этот новый эксперимент.

Марсдена поразило, что -частицы в этом простом опыте ведут себя иначе, чем должны вести, если принять модель атома такой, какой ее предложил Томсон.

Согласно модели Томсона положительный заряд распределен по всему объему атома и уравновешивается отрицательным зарядом электронов, каждый из которых имеет массу гораздо меньшую, чем масса -частицы.

Поэтому даже в редких случаях, когда -частица столкнется с гораздо более легким по сравнению с ней электроном, она может лишь незначительно отклониться от своего прямолинейного пути. Но в опытах Марсдена -частицы отнюдь не беспрепятственно проходили через металлическую пластинку.

Нет, некоторые из них отклонялись после удара о пластинку на угол около 150 о , т.е. почти обратно возвращались к излучателю. Таких возвращавшихся частиц было, правда, очень мало.

Когда экспериментатор преграждал путь -частицам более толстой пластинкой, то в его поле зрения появлялось больше -частиц, отклонившихся на большие углы. Это указывало, что замеченное Марсденом рассеяние -частиц не представляет собой какого-то поверхностного эффекта, т.е. оно не связано с поверхностью пластинки. Но Марсден не мог высказать каких-либо соображений по поводу увиденного им странного поведения -частиц. Он рассказал подробно о своих наблюдениях Резерфорду.

Позднее Резерфорд признался, что сообщение Марсдена произвело на него потрясающее впечатление: «это было почти неправдоподобно, как если бы вы выстрелили пятнадцатифунтовым снарядом в кусок папиросной бумаги и снаряд отскочил бы обратно и поразил вас».

Резерфорд сразу представил себе, что эффект, наблюдаемый Марсденом, мог быть только в одном случае: если -частица, проникнув в атом, натыкалась на какую-нибудь массивную преграду, имеющуюся в нем, и отбрасывалась, получив при столкновении мощный удар.

На основании этих исследований Резерфорд предположил ядерную (планетарную) модель атома.

Читайте также:  Фундаментальные взаимодействия и основные классы элементарных частиц - в помощь студенту

Согласно этой модели, вокруг положительного ядра, имеющего заряд ze (z – порядковый номер элемента в системе Менделеева, e – элементарный заряд), размер 10-15 – 10-14 м и массу, практически равную массе атома, в области с линейными размерами порядка 10-10 м по замкнутым орбитам движутся электроны, образуя электронную оболочку атома. Так как атомы нейтральны, то заряд ядра равен суммарному заряду электронов, т.е. вокруг ядра должно вращаться z электронов.

Для простоты предположим, что электрон движется вокруг ядра по круговой орбите радиуса r. При этом кулоновская сила взаимодействия между электроном и ядром сообщает электрону центростремительное ускорение.

Второй закон Ньютона для электрона, движущегося по окружности под действием кулоновской силы, имеет вид Опыты Резерфорда - в помощь студенту , где me и v – масса и скорость электрона на орбите радиуса r, — электрическая постоянная.

Данное уравнение содержит два неизвестных: r и v. Следовательно, существует бесчисленное множество значений радиуса и соответствующих ему значений скорости (а значит и энергии), удовлетворяющих этому уравнению. Поэтому величины r, v (следовательно и E) могут меняться непрерывно, т.е.

может испускаться любая, а не вполне определенная порция энергии. Тогда спектры атомов должны быть сплошными. В действительности же опыт показывает, что атомы имеют линейчатый спектр. Также из данного выражения следует, что при м скорость движения электронов м/с, а ускорение м/с2.

Согласно классической электродинамике, ускоренно движущиеся электроны должны излучать электромагнитные волны и вследствие этого непрерывно терять энергию. В результате электроны будут приближаться к ядру и в конце концов упадут на него.

Таким образом, атом Резерфорда оказывается неустойчивой системой, что опять-таки противоречит действительности.

Источник: https://studizba.com/files/show/doc/161144-1-149670.html

Опыты Резерфорда по рассеянию альфа-частиц — урок. Физика, 9 класс

Эксперимент по рассеиванию альфа-частиц

Открытие электрона, рентгеновского излучения и явления радиоактивности свидетельствовало о том, что представление об атоме как неделимой частице являлось неверным. К концу (XIX) века стало понятно, что атом должен иметь сложное строение. Большой вклад в изучение строения атома внёс физик-экспериментатор Эрнест Резерфорд.

Опыты Резерфорда - в помощь студенту

Эрнест Резерфорд

В (1904) году Резерфорд начал свои эксперименты по бомбардировке альфа-частицами тонких металлических пластин (золотых и платиновых) для изучения структуры атомов, из которых состоят пластины.

Альфа-частица — ионизированный атом гелия.

Альфа-частица — это массивная (масса альфа-частицы в несколько тысяч раз больше, чем масса электрона) положительно заряженная частица. Заряд альфа-частицы в два раза больше элементарного заряда.

Схематично установка Резерфорда изображена на рисунке ниже.

Опыты Резерфорда - в помощь студенту

В толстостенном свинцовом футляре ((1)) находится радиоактивное вещество ((2)), излучающее поток альфа-частиц. Через небольшое отверстие ((3)) поток альфа-частиц направляется на тонкую золотую фольгу ((4)) (толщиной порядка (0,1) мк). За фольгой располагается экран, покрытый сернистым цинком ((5)). При столкновении альфа-частицы на экране наблюдается вспышка.

Согласно модели строения атома по Томпсону, альфа-частицы должны столкнуться с большими плотными атомами и разлететься под разными углами.

Однако опыт показал, что большинство альфа-частиц пролетают беспрепятственно через пластинку металла ((6)). И только небольшая часть всех альфа-частиц изменяет направление движения, отклоняясь на небольшие углы ((7)).

А некоторые частицы и вовсе отлетают от фольги в обратном направлении ((8)).

Результаты опыта были удивительными. Только в (1911) году Резерфорд смог объяснить результаты опытов, предложив новую модель строения атома.

Ядерная модель строения атома

Так как большинство альфа-частиц свободно проходило через фольгу, это означало, что практически всё пространство, через которое проходит поток альфа-частиц — это пустота. Где же тогда «спрятана» вся масса атома? Резерфорд предположил, что практически вся масса атома сосредоточена в очень маленьком объёме — ядре атома. Было очевидно, что ядро должно быть положительно заряжено.

Когда альфа-частица пролетает достаточно близко от такого ядра, то из-за Кулоновских сил отталкивания происходит отклонение от первоначального направления движения частицы. А при столкновении с ядром частица отскакивает в обратном направлении. По расчётам Резерфорда, ядро атома должно было иметь размер примерно в (3000) раз меньший, чем атом.

Остальное пространство атома должны занимать электроны.

Опыты Резерфорда - в помощь студенту

Планетарная модель строения атома

Итак, стало понятно, что «пудинговая модель строения атома» неверна. На основе экспериментальных данных была предложена новая модель строения атома, которая получила название «планетарная модель строения атома».

Обрати внимание!

Согласно модели Резерфорда, атом состоит из очень маленького положительно заряженного ядра, размер которого в тысячи раз меньше самого атома, и электронов, которые вращаются вокруг ядра по круговым орбитам.

Модель очень напоминала модель строения Солнечной системы, где вокруг массивного Солнца по круговым орбитам вращаются планеты.

Таким образом, на основе планетарной модели можно было объяснить результаты опытов по рассеянию альфа — частиц. Однако объяснить стабильность атомов не удавалось. Движение электрона в атоме происходит с ускорением.

В соответствии с классической электродинамикой это движение должно было сопровождаться излучением электромагнитных волн, в результате чего энергия электрона в атоме непрерывно уменьшалась бы. Электрон стал бы приближаться к ядру по спирали и должен был бы очень скоро упасть на него.

Однако атомы стабильны. Следовательно, планетарная модель противоречила законам классической физики.

Источник: https://www.yaklass.ru/p/fizika/9-klass/stroenie-atoma-i-atomnogo-iadra-344899/radioaktivnost-kak-dokazatelstvo-slozhnogo-stroeniia-atoma-opyty-rezerfo_-344900/re-9196f3e2-2890-4891-b123-d4dad6d18368

Опыт Резерфорда

Существование в атоме почти точеч­ного, но очень тяжелого положительно заряженного ядра было доказано английским физиком Эрнестом Резерфор­дом.

В 1906-1912 гг. он изучал прохождение α-частиц с энергией в несколько МэВ через тонкие пластины (фоль­гу) золота и других металлов. Большинство частиц пролета­ло сквозь фольгу, практически не меняя направления сво­его движения.

Но некоторые из них резко отклонялись от своего пути. При толщине фольги в 1 мкм в среднем всего 1 из 10 000 частиц отклонялась на угол больше 90°.

Это каза­лось достаточно странным, так как, пролетая через фольгу, α-частица должна пройти мимо нескольких тысяч атомов.

Столь редкие взаимодействия заставили Резерфорда пред­положить, что масса в веществе распределена не равномер­но, а в виде отдельных, очень маленьких сгустков. Основ­ное количество частиц пролетает между этими сгустками, а рассеиваются только те, которые в них попадают.

Поскольку атомы в твердом теле расположены достаточно близко друг от друга, расстояния между ними примерно такие же, как размеры са­мого атома, они не могут быть этими сгустками. Поэтому Резерфорд при­шел к выводу, что вещество сконцен­трировано в центре атома, в его «яд­ре».

Опыты Резерфорда - в помощь студенту
Прибор, с помощью которого Резерфорд исследовал рассеяние α-частиц: 1 — микроскоп; 2 — флуоресцирующий экран; 3 — препарат радия в свинцовой экранирующей оболочке; 4 — проволочка, используемая в качестве мишени; 5 — подвод вакуумного насоса; 6 — корпус

К моменту проведения своих опытов ученый уже установил заряд и массу α-частиц. Он знал, что α-час­тицы несут положительный заряд, по величине в два раза превышаю­щий заряд электрона, и что они дос­таточно тяжелые, примерно в 7000 раз тяжелее электронов. Если α-частицы отклоняются ядрами, значит, ядра тоже несут положительный за­ряд.

Резерфорд рассчитал доли частиц, которые должны рассеиваться в определенные интервалы углов точечными ядрами. Результаты расчетов и экспериментов прекрасно согласуются, если положить заряд ядра равным Z|e|, где Z — атомный номер элемента, из которого сделана фольга.

Ин­тересно отметить, что данные опытов Резерфорд сравнивал с расчетами, выполненными в рамках классической физи­ки.

Однако, как выяснилось после создания квантовой ме­ханики, полученная им для описания рассеяния α-частиц «классическая» формула (формула Резерфорда) справед­лива и в квантовой физике. Этим фактом он очень гордил­ся.

Ведь чтобы самому проделать вычисления, Резерфорд специально вместе со студентами прослушал курс теории вероятностей, хотя к тому времени он уже был нобелев­ским лауреатом, директором лаборатории, признанным мэтром экспериментальной физики!

Исходя из результатов опытов Резерфорда можно оценить верхнюю границу размеров ядра. Для этого найдем мини­мальное расстояние R, на которое α-частица с энергией Eкин может подойти к ядру. При максимальном сближении с ядром кинетическая энергия α-частицы переходит в потен­циальную энергию кулоновского взаимодействия:

Eкин = 2keZe / R.

При Eкин порядка нескольких МэВ, а имен­но такими были энергии α-частиц в опытах Резерфорда, по­лучим: R ~ 10-14 м. Резерфорд в своих расчетах полагал яд­ро точечным, поэтому можно утверждать, что размеры ядер не превышают полученной цифры и до расстояний ~10-14 м взаимодействие α-частиц с ядрами носит кулоновский характер.

Правда, для частиц, которые испытывали лобовое столкновение и отклонялись почти на 180°, наблю­дались небольшие расхождения с распределением, следующим из закона Кулона. Это указывало на то, что на рас­стояниях, меньших ~10-14 м, начинают действовать какие-то другие, не электростатические силы.

Теперь мы знаем, что на таких расстояниях вступает в действие сильное (ядерное) взаимодействие. Материал с сайта http://worldofschool.ru

Таким образом, Резерфорд установил в 1911 г. наличие в атомах ядер, размеры которых по крайней мере в 104 раз меньше размеров атомов и в которых сосредоточена прак­тически вся масса атома. После опытов Резерфорда стало ясно, что вещество в основном состоит «из пустоты». А за свои исследования Резерфорд заслужил в научном мире титул «отца атомной теории».

Резерфорд изучал строение атомов, бомбардируя их α-частицами. Он часто гово­рил: «Smash the atom» — «Расшибить атом».

До сих пор обстрел частицами вы­соких энергий остается главным методом изучения структуры микрообъектов, изменились только инстру­менты.

Созданы более точ­ные регистрирующие при­боры, методы компью­терной обработки результа­тов, а главное, современные мощные ускорители, кото­рые позволяют получать бомбардирующие частицы очень высоких энергий.

На этой странице материал по темам:

Источник: http://WorldOfSchool.ru/fizika/yadernaya/yadra/opyt-rezerforda

Опыт Резерфорда

Атом состоит из компактного и массивного положительно заряженного ядра и отрицательно заряженных легких электронов вокруг него.

Эрнест Резерфорд — уникальный ученый в том плане, что свои главные открытия он сделал уже после получения Нобелевской премии. В 1911 году ему удался эксперимент, который не только позволил ученым заглянуть вглубь атома и получить представление о его строении, но и стал образцом изящества и глубины замысла.

Используя естественный источник радиоактивного излучения, Резерфорд построил пушку, дававшую направленный и сфокусированный поток частиц. Пушка представляла собой свинцовый ящик с узкой прорезью, внутрь которого был помещен радиоактивный материал.

Благодаря этому частицы (в данном случае альфа-частицы, состоящие из двух протонов и двух нейтронов), испускаемые радиоактивным веществом во всех направлениях, кроме одного, поглощались свинцовым экраном, и лишь через прорезь вылетал направленный пучок альфа-частиц.

Далее на пути пучка стояло еще несколько свинцовых экранов с узкими прорезями, отсекавших частицы, отклоняющиеся от строго заданного направления. В результате к мишени подлетал идеально сфокусированный пучок альфа-частиц, а сама мишень представляла собой тончайший лист золотой фольги.

В нее-то и ударял альфа-луч. После столкновения с атомами фольги альфа-частицы продолжали свой путь и попадали на люминесцентный экран, установленный позади мишени, на котором при попадании на него альфа-частиц регистрировались вспышки.

По ним экспериментатор мог судить, в каком количестве и насколько альфа-частицы отклоняются от направления прямолинейного движения в результате столкновений с атомами фольги.

Эксперименты подобного рода проводились и раньше. Основная их идея состояла в том, чтобы по углам отклонения частиц накопить достаточно информации, по которой можно было бы сказать что-либо определенное о строении атома. В начале ХХ века ученые уже знали, что атом содержит отрицательно заряженные электроны.

Однако преобладало представление, что атом представляет собой что-то похожее на положительно заряженную тонкую сетку, заполненную отрицательно заряженными электронами-изюминами, — модель так и называлась «модель сетки с изюмом».

По результатам подобных опытов ученым удалось узнать некоторые свойства атомов — в частности, оценить порядок их геометрических размеров.

Резерфорд, однако, заметил, что никто из его предшественников даже не пробовал проверить экспериментально, не отклоняются ли некоторые альфа-частицы под очень большими углами.

Модель сетки с изюмом просто не допускала существования в атоме столь плотных и тяжелых элементов структуры, что они могли бы отклонять быстрые альфа-частицы на значительные углы, поэтому никто и не озабочивался тем, чтобы проверить такую возможность.

Резерфорд попросил одного из своих студентов переоборудовать установку таким образом, чтобы можно было наблюдать рассеяние альфа-частиц под большими углами отклонения, — просто для очистки совести, чтобы окончательно исключить такую возможность.

В качестве детектора использовался экран с покрытием из сульфида натрия — материала, дающего флуоресцентную вспышку при попадании в него альфа-частицы. Каково же было удивление не только студента, непосредственно проводившего эксперимент, но и самого Резерфорда, когда выяснилось, что некоторые частицы отклоняются на углы вплоть до 180°!

В рамках устоявшейся модели атома полученный результат не мог быть истолкован: в сетке с изюмом попросту нет ничего такого, что могло бы отразить мощную, быструю и тяжелую альфа-частицу. Резерфорд вынужден был заключить, что в атоме большая часть массы сосредоточена в невероятно плотном веществе, расположенном в центре атома.

А вся остальная часть атома оказывалась на много порядков менее плотной, нежели это представлялось раньше.

Из поведения рассеянных альфа-частиц вытекало также, что в этих сверхплотных центрах атома, которые Резерфорд назвал ядрами, сосредоточен также и весь положительный электрический заряд атома, поскольку только силами электрического отталкивания может быть обусловлено рассеяние частиц под углами больше 90°.

Годы спустя Резерфорд любил приводить по поводу своего открытия такую аналогию. В одной южноафриканской стране таможню предупредили, что в страну собираются провезти крупную партию контрабандного оружия для повстанцев, и оружие будет спрятано в тюках хлопка. И вот перед таможенником после разгрузки оказывается целый склад, забитый тюками с хлопком.

Как ему определить, в каких именно тюках спрятаны винтовки? Таможенник решил задачу просто: он стал стрелять по тюкам, и, если пули рикошетили от какого-либо тюка, он по этому признаку и выявлял тюки с контрабандным оружием.

Так и Резерфорд, увидев, как альфа-частицы рикошетируют от золотой фольги, понял, что внутри атома скрыта гораздо более плотная структура, чем предполагалось.

Картина атома, нарисованная Резерфордом по результатам опыта, нам сегодня хорошо знакома.

Атом состоит из сверхплотного, компактного ядра, несущего на себе положительный заряд, и отрицательно заряженных легких электронов вокруг него. Позже ученые подвели под эту картину надежную теоретическую базу (см.

Атом Бора), но началось всё с простого эксперимента с маленьким образцом радиоактивного материала и куском золотой фольги.

См. также:

Источник: https://elementy.ru/trefil/18/Opyt_Rezerforda

Атомная физика, опыты Резерфорда

  • Ядерное строение модели атома и опыт ученого Резерфорда
  • Частицы, открытые Резерфордом
  • Распад ядер радиоактивных элементов

Еще в античные времена атомы представляли исключительно как неделимые мельчайшие частицы. Однако доказательство реальности существования этих элементов были получены только в XVIII веке.

В следствии того, что никто не задавался вопросом их внутреннего устройства, об атомах было представление как о нечто неделимом. Исследователям атомистического строения физических тел удалось значительно продвинуться вперед в начале XIX столетия.

Проведенные опыты позволили сделать вывод, что внутри атомов имеется огромное количество электрических зарядов. Д.И. Менделеев, великий русский химик, которым в 1869 году была представлена широкой публике периодическая система элементов (где была обозначена необходимость в единой природе атомов), сыграл неоценимую роль в развитии атомистической идеи.

Спектроскопические учения, которые позволили физикам открыть линейчатые постоянные спектры всех атомов, стали важным доказательством того, что мельчайшие частицы обладают сложной структурой.

Начало XIX века стало временем разработкой дискретных линий в излучении световых волн атомов водорода в видимой части самого спектра.

Установление математических закономерностей, которые позволяют связывать длины волн действующих линий, было достигнуто именно благодаря данным открытиям.

Первооткрывателем электрона в 1897 году после измерения отношения заряда основного элемента к массе, стал Дж. Томсон. Его эксперименты стали подтверждением гипотезы о нахождении электронов в обязательном порядке в составе атомов.

Таким образом, все известные к началу прошлого века экспериментальные подтверждения доказывают факт многогранности атомов веществ и их сложного внутреннего строения. Атомы представляют собой электро-нейтральную систему, где электроны являются носителями отрицательного заряда веществ, масса которых является только малой частью атомов.

Ядерное строение модели атома и опыт ученого Резерфорда

Выдающийся английский физик-теоретик Эрнест Резерфорд, годы жизни 1871-1937, занимался разработкой учения о радиоактивности и строении атома, учредил научную школу, зарубежный член Российской Академии наук, почетный представитель Академии наук СССР.

В ходе научной деятельности ученым было открыто множество закономерностей в физике и доказано неполноценность и ошибочность модели Томсона. По предложению Резерфорда для зондирования веществ стали использоваться -частицы (чей положительный заряд приравнивается к удвоенному элементарному заряду, и масса которых в 7300 раз превышает вес электронов), формирующиеся при радиоактивном расслоении отдельных химических элементов, в том числе радия. Резерфорд постоянно использовал в своих опытах -частицы, кинетическая энергия которых 5 МэВ, а скорость около 107 м/с, что достаточно быстро, но все же значительно меньше скорости света. Открытие -частицы, которые представляют собой ионизированные атомы гелия, произошло в процессе исследования радиоактивности.

Многие исследователи подвергли сомнению выводы, сделанные Резерфордом благодаря своим экспериментам, о внутреннем строении атома ввиду их радикальности. Сомневался и сам Резерфорд, работы которого были опубликованы только спустя два года после первых опытов.

Английским физиком была предложена планетарная модель атомов, основанная на классическом представлении о хаотичном движении частиц. Данная концепция предполагает наличие в центре атома положительно заряженного ядра, в котором к тому же сосредоточена вся масса элемента.

Атом в целом обладает нейтральным зарядом, но электроны не могут находиться в постоянном состоянии покоя, это привело бы к падению на ядро.

Частицы, открытые Резерфордом

Резерфорд не был пионером в области изучения нестабильного радиоактивного излучения и поглощения. Эту сферу начали осваивать супруги Кюри и Беккерель.

С момента открытия процессов радиоактивности прошло немного времени, и считалось, что энергия является внешним источником.

Читайте также:  Иррационализм - в помощь студенту

Проводя исследования с урановыми лучами и их характеристиками, Резерфорд сделал вывод о неоднородности открытых Беккерелем лучей.

Экспериментом Резерфорда с фольгой было доказано деление радиоактивного луча натри потока:

  • первый поток поглощается полностью алюминиевой фольгой;
  • второй способен проникать через нее;
  • третий представляет собой множество мелких элементов, которые физики назвали альфа- и бета-частицами или лучами.

Микрочастицы, открытые Резерфордом существенно повлияли на процесс развития атомной физики.

Сенсационное открытие позволило доказать, что атомы урана являются источниками энергии. Альфа частицы стали выполнять роль положительно заряженных атомов гелия, бета частицы стали электронами.

Гамма частицы, которые были открыты позже, представляли собой ничто иное, как электромагнитное излучение.

Распад ядер радиоактивных элементов

Открытие, совершенное Резерфордом стало толчком не только для физике как науке, но и для него самого. Он принял решение продолжать изучение радиоактивности в университете канадского города Монреаля.

С исследователем Содди было проведено ряд совместных экспериментов, что позволило определить изменение атома в ходе испускания своих частиц. Словно средневековые алхимики, ученые в ходе очередной научной сенсации успешно трансформировали уран в свинец.

Именно так был открыт радиоактивный распад. Резерфорд и Содди описали данный закон в работе«Радиоактивное превращение».

Физиками-теоретиками была определена прямая зависимость интенсивности распада от прошедшего времени и числа действующих в образце радиоактивных атомов.

Был выявлен факт уменьшения строго в геометрической прогрессии активности и интенсивности с течением времени. Свое определенное время необходимо для каждого вещества. Принцип полураспада был сформулирован ученым на основе скорости протекания распада.

Резерфорд очень талантливо для своего времени проводил эксперименты. Именно опытным путем он решил доказать свои убеждения, усомнившись в теории и модели Томсона. Томсоновский атом представляет собой шарообразное облако, состоящее из электронов, и, где альфа частицы свободно проходили бы сквозь фольгу.

Для своего эксперимента Резерфорд сконструировал специальный прибор, который представлял собой свинцовый ящик с отверстием. В ящике физик поместил радиоактивный материал. Альфа частицы полностью поглощались ящиком во всех направлениях, за исключением направления в сторону отверстия. Таким образом был сформирован направленный поток частиц.

Для отсеивания ненужных частиц, которые внезапно отклонялись от заданного курса, впереди размещались два свинцовых экрана

Английский ученый Эрнест Резерфорд благодаря своей тяге к новым экспериментам пользовался популярностью среди коллег. В результате своих многочисленных опытов, которыми исследователь занимался всю свою жизнь, Резерфорд открыл альфа- и бета-лучи, описал закон полураспада, сформулировал планетарную модель атома.

Энергетический потенциал до Резерфорда считался исключительно внешним источником. Научный мир изменил свое скептическое мнение узнав какие частицы были созданы и открыты Резерфордом. Наука сделал огромный прорыв в развитии физики и химии, благодаря достижениям ученого.

Благодаря ему возникла такая отрасль как ядерная физика.

Источник: https://sciterm.ru/spravochnik/atomnaya-fizika-opiti-rezerforda/

Реферат: Опыты Резерфорда. Скачать бесплатно и без регистрации

* Данная работа не является научным трудом, не является выпускной квалификационной работой и представляет собой результат обработки, структурирования и форматирования собранной информации, предназначенной для использования в качестве источника материала при самостоятельной подготовки учебных работ.

Один из самых знаменитых физиков первой половины XX в. — Эрнест Резерфорд. Когда-то он первый анатомировал атом и обнаружил в нем ядро. К нему можно отнести исследования сложных явлений, протекающих в этой чрезвычайно маленькой частице вещества, а впоследствии он в своей лаборатории расщепил ядра атомов.

Когда он еще был студентом 2-го курса университета, на одной из конференций Резерфорд выступил с докладом на тему “Эволюция элементов”.

Было высказано предположение, что каждый химический элемент представляет сложную химическую систему, содержащую одни и те же элементарные частицы.

Это было на тот момент, когда все считали, что атом неделим – в физике господствовала теория Дальтона о неделимости атомов.

На основе накопленных экспериментальных данных, первая попытка создания модели атома принадлежит ДЖ. ДЖ. Томсону. Томсон думал, что электроны вкраплены в сверхминиатюрную сферу диаметром 10 –8 см.

, а в сфере распределены равномерно положительные заряды, однако вместе с отрицательно заряженными электронами сфера электрически вообщем-то нейтральна — это и есть атом. На тот момент Резерфорд думал также.

Он работал в одной лаборатории с Томсоном, и даже не думал о создании более совершенную модель, основанную на новых представлениях.

А.Беккерель, изучая люминесценцию различных веществ, в 1896 г., случайно обнаружил, что соли урана без предварительного освещения производят излучение, которое обладает большой проникающей силой и способно воздействовать на фотографическую пластинку, завернутую в черную бумагу.

Резерфорд заинтересовался данным явлением и сразу же занялся изучением Беккерелиевых лучей. Так как и рентгеновские и беккерелиевы лучи производили ионизацию воздуха, то он начал исследования рентгеновских лучей с проверки своего предположения о связи между ними.

Результат был далек от успешного.

Но самым важным было то, что Резерфорд открыл частицы в составе излучения, испускаемого ураном, он поместил урановый источник в сильное магнитное поле и разделил на три различных вида излучение. То есть, тогда он открыл состав радиоактивности: альфа– и бета–частицы, а также гамма-лучи.

В результате этого Резерфорд мгновенно сделал гениальное заключение, что именно с помощью них можно проникнуть в глубь атома. Это было абсолютно правильно, что и подтвердилось немного позднее.

Резерфорд широко применял частицы в последующих исследованиях в качестве снарядов, проникающих атомное ядро – сердце атома.

Этот великий физик открыл и доказал эманацию тория. Он объяснил, что этот радиоактивный газ, который выделяется из тория – это химический элемент, отличающийся от самого тория. Позднее ним же был определен атомный вес эманации и Резерфорд показал, что она представляет собой благородный газ нулевой группы системы Д.И.Менделева.

Впервые объясняли радиоактивный распад как самопроизвольный переход одних элементов в другие Резерфорд и Фредерик Содди. После эманации тория Резерфорд была открыта эманация радия – радон. Он понял, что радий, испуская частицы, перевоплощается в новое активное вещество, сходно с эманацией тория. Это послужило окончательным доказательством теории радиоактивного распада.

В результате опытов Резерфорд в начале 1903 года пытается выяснить химический состав этих частиц. Его замысел состоит в том, чтобы сравнить массу такой частицы с массами атомов известных элементов. Данное исследование позволило ему первому идентифицировать частицы с атомами гелия. Далее это было подтверждено и спектрографически.

В 1908 году Резерфорд прибегнул к помоши сцинтилляционного счетчика Гейгера для широких опытов по исследованию частиц методом подсчета.

Вместе с Гейгером и Ройдсом Резерфорд произвел серию опытов, подтверждавших, что ; -частицы есть ничто иное как дважды ионизированные (т.е. потерявшие по 2 электрона) атомы гелия. Этот исторический опыт, благодаря которому уже ни у кого не могло остаться сомнения в правильности его теории распада, заключался в следующем:

в запаянную трубку 2 Резерфорд поместил некоторое количество радона – эманации радия. Толщина стенок этой трубки 0,01 мм. Они достаточно тонки, чтобы испускаемые радоном ; -частицы могли проходить через них во внешнюю трубку 3. Перед опытом трубка 3 тщательно откачивалась, и в ней спектрографическим путем нельзя было обнаружить линий гелия.

Через несколько дней в трубке 3 обнаружилось накопление газа. Повышая давление в приборе, накопившийся газ можно было сконцентрировать в трубке 1. Через трубку пропускался электрический заряд и тогда оказывалось, что в ней спектральный анализ показывает характерные линии гелия. В трубке был гелий.

Но может быть он попал в трубку 2 по недосмотру вместе с радоном, а оттуда проник в трубки 3 и 1? Контрольный опыт дал на этот вопрос отрицательный ответ. Точно в такой же прибор (в трубку 2) Резерфорд помещал не радон, а чистый гелий. Однако через несколько дней в трубке 1 линии гелия не обнаруживались. Гелий не мог пройти через стеклянные стенки трубки 2 в трубку 3.

; -частицы же легко проходили через стекло и накапливались в трубке 3, а затем концентрировались в трубке 1, где и подвергались спектральному анализу, давая линии гелия.

После этого Резерфорд, вместе с Гейгером и Марсденом провели новую серию экспериментов. Результаты произвели переворот в физике. Это была наиболее драматическая глава в науке нашего времени. Резерфорд открыл атомное ядро и тем самым основал новую исключительно важную науку – ядерную физику.

Что это были за эксперименты? Резерфорд и Гейгер на первых порах продолжили наблюдения сцинтилляций, вызываемых ; -частицами при ударе о люминесцентный экран из сернистого цинка. Прежде всего опыты привели Резерфорда к заключению, что каждая вспышка (сцинтилляция) вызывается одной ; -частицей.

Таким образом оправдалось предположение, выдвинутое им ранее. Резерфорд писал тогда, что наблюдение сцинтилляций на экране из сернистого цинка представляет собой очень удобный способ счета частиц, если каждая частица вызывает вспышку.

Следовательно, если каждая вспышка вызвана одной ; -частицей, то перед физиками открывается возможность наблюдать за поведением отдельных атомов.

Резерфорд и Гейгер визуально подсчитали, что в продолжение секунды из излучателя в одну тысячную грамма радия вылетает 130 000 ; -частиц. Точность подсчета была безукоризненна.

Оба ученых, к которым позднее присоединился Марсден, помногу часов проводили в затемненной лаборатории за утомительным счетом сцинтилляций.

Гейгер рассказывал, что ему одному пришлось подсчитать в общей сложности миллион ; -частиц.

Свою работу начал ученик Резерфорда Марсден. Ему было поручено считать ; -частицы, проходящие через тонкие металлические пластинки. Эти пластинки помещались в прибор между излучателем ; -частиц и люминесцентным экраном.

Поручая Марсдену эту работу, Резерфорд не рассчитывал обнаружить что=либо любопытное. При условии, что модель атома Томсона правильна (а тогда не было никаких причин сомневаться в этом), опыт должен был показать, что ; -частицы свободно проходят через металлические преграды. Однако что-то все-таки заставило Резерфорда пойти на этот новый эксперимент.

Марсдена поразило, что ; -частицы в этом простом опыте ведут себя иначе, чем должны вести, если принять модель атома такой, какой ее предложил Томсон.

Согласно модели Томсона положительный заряд распределен по всему объему атома и уравновешивается отрицательным зарядом электронов, каждый из которых имеет массу гораздо меньшую, чем масса ; -частицы.

Поэтому даже в редких случаях, когда ; -частица столкнется с гораздо более легким по сравнению с ней электроном, она может лишь незначительно отклониться от своего прямолинейного пути. Но в опытах Марсдена ; -частицы отнюдь не беспрепятственно проходили через металлическую пластинку.

Нет, некоторые из них отклонялись после удара о пластинку на угол около 150 о , т.е. почти обратно возвращались к излучателю. Таких возвращавшихся частиц было, правда, очень мало.

Когда экспериментатор преграждал путь ; -частицам более толстой пластинкой, то в его поле зрения появлялось больше ; -частиц, отклонившихся на большие углы. Это указывало, что замеченное Марсденом рассеяние ; -частиц не представляет собой какого-то поверхностного эффекта, т.е. оно не связано с поверхностью пластинки. Но Марсден не мог высказать каких-либо соображений по поводу увиденного им странного поведения ; -частиц. Он рассказал подробно о своих наблюдениях Резерфорду.

Позднее Резерфорд признался, что сообщение Марсдена произвело на него потрясающее впечатление: “это было почти неправдоподобно, как если бы вы выстрелили пятнадцатифунтовым снарядом в кусок папиросной бумаги и снаряд отскочил бы обратно и поразил вас”.

Резерфорд сразу представил себе, что эффект, наблюдаемый Марсденом, мог быть только в одном случае: если ; -частица, проникнув в атом, натыкалась на какую-нибудь массивную преграду, имеющуюся в нем, и отбрасывалась, получив при столкновении мощный удар.

На основании этих исследований Резерфорд предположил ядерную (планетарную) модель атома.

Согласно этой модели, вокруг положительного ядра, имеющего заряд ze (z – порядковый номер элемента в системе Менделеева, e – элементарный заряд), размер 10 -15 – 10 -14 м и массу, практически равную массе атома, в области с линейными размерами порядка 10 -10 м по замкнутым орбитам движутся электроны, образуя электронную оболочку атома. Так как атомы нейтральны, то заряд ядра равен суммарному заряду электронов, т.е. вокруг ядра должно вращаться z электронов.

Для простоты предположим, что электрон движется вокруг ядра по круговой орбите радиуса r.

При этом кулоновская сила взаимодействия между электроном и ядром сообщает электрону центростремительное ускорение.

Второй закон Ньютона для электрона, движущегося по окружности под действием кулоновской силы, имеет вид, где m e и v – масса и скорость электрона на орбите радиуса r, — электрическая постоянная.

Данное уравнение содержит два неизвестных: r и v. Следовательно, существует бесчисленное множество значений радиуса и соответствующих ему значений скорости (а значит и энергии), удовлетворяющих этому уравнению. Поэтому величины r, v (следовательно и E) могут меняться непрерывно, т.е.

может испускаться любая, а не вполне определенная порция энергии. Тогда спектры атомов должны быть сплошными. В действительности же опыт показывает, что атомы имеют линейчатый спектр. Также из данного выражения следует, что при м скорость движения электронов м/с, а ускорение м/с 2 .

Согласно классической электродинамике, ускоренно движущиеся электроны должны излучать электромагнитные волны и вследствие этого непрерывно терять энергию. В результате электроны будут приближаться к ядру и в конце концов упадут на него.

Таким образом, атом Резерфорда оказывается неустойчивой системой, что опять-таки противоречит действительности.

Попытки построить модель атома в рамках классической физики не привели к успеху: модель Томсона была опровергнута опытами Резерфорда, ядерная же модель оказалась неустойчивой электродинамически и противоречила опытным данным. Преодоление возникших трудностей потребовало создания качественно новой – квантовой – теории атома.

В 1914 году началась первая мировая война и Резерфорду пришлось на время отложить свои исследования. Но периодически, работая на военную промышленность, он возвращался к своим собственным экспериментам. В своих следующих экспериментах Резерфорд планировал взломать атом.

Все это привело к потрясающему успеху, взлет гения Резерфорда привел к открытию, революционировавшему впоследствии всю науку и даже технику современности. Дан первый толчок к началу атомного века. Резерфорд расщепил атомное ядро.

Мысль о расщеплении ядра атома появилась у Резерфорда при наблюдении в камере Вильсона и в стинцилляционном счетчике загадочных треков (следов).

Они были гораздо более длинные, чем треки частиц, которые были емухорошо знакомы по бесчисленным опытам. Он решил найти неизвестные ему причины резкого удлинения пробега частиц.

И он также предположил, что длинные следы оставляют другие неопознанные частицы. Резерфорду нужно было выяснить, какое из этих двух предположений истинно.

Чтобы найти ответы на свои вопросы Резерфорд провел серию опытов по бомбардировке частицами различных веществ. Для этого ученый построил прибор, необыкновенно простой по нашим меркам.

Но нельзя не учесть, что он был наиболее пригоден только для наглядного решения задачи. здесь мишенями для бомбардировки должны были быть газы (т.е.

легкие атомы), а не металлические пластинки, обычно использовавшиеся Резерфордом во многих предыдущих опытах.

На схеме изображен прибор, построенный Резерфордом, с помощью которого ему удалось впервые расщепить ядра атомов легких элементов. Его устройство заключается в том, что латунная трубка 6 длиной 20 см с двумя кранами наполняется газом.

Внутри нее находится диск радиоактивного излучателя 7, испускающего частицы. Диск этот укреплен на стойке, двигающейся по рельсу 4. Во время опыта один конец трубки закрывается матовой стеклянной пластинкой, а другой конец – стеклянной пластинкой, прикрепляемой воском.

Маленькое прямоугольное отверстие в латунной пластинке закрывалось серебряной пластинкой 3, которая обладала способностью задерживать частицы, аналогичные слою воздуха толщиной примерно 5 см. Против отверстия помещался люминесцирующий экран из цинковой обманки.

Для счета сцинтилляций исследователь пользовался зрительной трубой 1.

После того, как Резерфорд наполнил трубку азотом, то в поле зрения появились частицы, оставляющие очень длинный след, подобно тому, что он уже наблюдал.

Конечно, до того как прийти к окончательным выводам, Резерфорд проделал еще много опытов.

Но в итоге он пришел к заключению, что при столкновении частиц с ядрами азота, некоторые из них разрушаются, испуская ядра водорода – протоны, а после этого образуется ядро кислорода.

С самого начала Резерфорду было понятно огромное значение данного открытия. Расщепление атомных ядер было произведено впервые. Представления, считавшиеся до этого момента непоколебимыми, были наглядно опровергнуты. Открывались совершенно новые и удивительные возможности искусственного получения одних элементов из других, выделения огромной энергии, содержащейся в ядрах, и т.д.

Продолжая исследования, он получает экспериментальное подтверждение ранее уже установленного им положения – что небольшое количество атомов азота при бомбардировке распадается, испуская быстрые протоны – ядра водорода.

В свете позднейших исследований, писал Резерфорд , “общий механизм этого превращения вполне ясен. Время от времени ; -частицы действительно проникают в ядро азота, образуя на мгновение новое ядро типа ядра фтора с массой 18 и зарядом 9.

Это ядро, которое в природе не существует, чрезвычайно неустойчиво и сразу же распадается, выбрасывая протон и превращаясь в устойчивое ядро кислорода с массой 17 …”

Проделывая длительные эксперименты, Резерфорду удалось вызвать ядерные реакции в 17 легких элементах.

Не прекращая опытов по расщеплению ядер, Резерфорд пришел к следующему выводу: хотя частицы и обладают огромной энергией, но они все же являются недостаточно мощными снарядами для проникновения в ядра элементов.

Было решено повысить энергию частиц, разгоняя их в высоковольтной установке. Это первый шаг в последующем развитии ускорительной техники.

Список используемой литературы :

1. Ф.Федоров. “Цепная реакция идеи”, изд. “Знание”, М., 1975г.

2. Т.И.Трофимова. “Курс физики”, изд. “Высшая школа”, М., 1999г.

3. “Курс общей физики”, Г.А.Зисман, О.М.Тодес, изд. “Эдельвейс”, Киев, 1994г.

Источник: https://ReferatBank.ru/referat/preview/14810/referat-opyty-rezerforda.html

Ссылка на основную публикацию